scholarly journals Mitochondrial PITRM1 peptidase loss-of-function in childhood cerebellar atrophy

2018 ◽  
Vol 55 (9) ◽  
pp. 599-606 ◽  
Author(s):  
Yeshaya Langer ◽  
Adi Aran ◽  
Suleyman Gulsuner ◽  
Bassam Abu Libdeh ◽  
Paul Renbaum ◽  
...  

ObjectiveTo identify the genetic basis of a childhood-onset syndrome of variable severity characterised by progressive spinocerebellar ataxia, mental retardation, psychotic episodes and cerebellar atrophy.MethodsIdentification of the underlying mutations by whole exome and whole genome sequencing. Consequences were examined in patients’ cells and in yeast.ResultsTwo brothers from a consanguineous Palestinian family presented with progressive spinocerebellar ataxia, mental retardation and psychotic episodes. Serial brain imaging showed severe progressive cerebellar atrophy. Whole exome sequencing revealed a novel mutation: pitrilysin metallopeptidase 1 (PITRM1) c.2795C>T, p.T931M, homozygous in the affected children and resulting in 95% reduction in PITRM1 protein. Whole genome sequencing revealed a chromosome X structural rearrangement that also segregated with the disease. Independently, two siblings from a second Palestinian family presented with similar, somewhat milder symptoms and the same PITRM1 mutation on a shared haplotype. PITRM1T931M carrier frequency was 0.027 (3/110) in the village of the first family evaluated, and 0/300 among Palestinians from other locales. PITRM1 is a mitochondrial matrix enzyme that degrades 10–65 amino acid oligopeptides, including the mitochondrial fraction of amyloid-beta peptide. Analysis of peptide cleavage activity by the PITRM1T931M protein revealed a significant decrease in the degradation capacity specifically of peptides ≥40 amino acids.ConclusionPITRM1T931M results in childhood-onset recessive cerebellar pathology. Severity of PITRM1-related disease may be affected by the degree of impairment in cleavage of mitochondrial long peptides. Disruption and deletion of X linked regulatory segments may also contribute to severity.

2020 ◽  
Vol 13 (5) ◽  
pp. 504-514
Author(s):  
Zuhair N. Al-Hassnan ◽  
Abdulrahman Almesned ◽  
Sahar Tulbah ◽  
Ali Alakhfash ◽  
Faten Alhadeq ◽  
...  

Background: Childhood-onset cardiomyopathy is a heterogeneous group of conditions the cause of which is largely unknown. The influence of consanguinity on the genetics of cardiomyopathy has not been addressed at a large scale. Methods: To unravel the genetic cause of childhood-onset cardiomyopathy in a consanguineous population, a categorized approach was adopted. Cases with childhood-onset cardiomyopathy were consecutively recruited. Based on the likelihood of founder mutation and on the clinical diagnosis, genetic test was categorized to either (1) targeted genetic test with targeted mutation test, single-gene test, or multigene panel for Noonan syndrome, or (2) untargeted genetic test with whole-exome sequencing or whole-genome sequencing. Several bioinformatics tools were used to filter the variants. Results: Two-hundred five unrelated probands with various forms of cardiomyopathy were evaluated. The median age of presentation was 10 months. In 30.2% (n=62), targeted genetic test had a yield of 82.7% compared with 33.6% for whole-exome sequencing/whole-genome sequencing (n=143) giving an overall yield of 53.7%. Strikingly, 96.4% of the variants were homozygous, 9% of which were found in 4 dominant genes. Homozygous variants were also detected in 7 novel candidates ( ACACB, AASDH, CASZ1, FLII, RHBDF1, RPL3L, ULK1 ). Conclusions: Our work demonstrates the impact of consanguinity on the genetics of childhood-onset cardiomyopathy, the value of adopting a categorized population-sensitive genetic approach, and the opportunity of uncovering novel genes. Our data suggest that if a founder mutation is not suspected, adopting whole-exome sequencing/whole-genome sequencing as a first-line test should be considered.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Kelley Paskov ◽  
Jae-Yoon Jung ◽  
Brianna Chrisman ◽  
Nate T. Stockham ◽  
Peter Washington ◽  
...  

Abstract Background As next-generation sequencing technologies make their way into the clinic, knowledge of their error rates is essential if they are to be used to guide patient care. However, sequencing platforms and variant-calling pipelines are continuously evolving, making it difficult to accurately quantify error rates for the particular combination of assay and software parameters used on each sample. Family data provide a unique opportunity for estimating sequencing error rates since it allows us to observe a fraction of sequencing errors as Mendelian errors in the family, which we can then use to produce genome-wide error estimates for each sample. Results We introduce a method that uses Mendelian errors in sequencing data to make highly granular per-sample estimates of precision and recall for any set of variant calls, regardless of sequencing platform or calling methodology. We validate the accuracy of our estimates using monozygotic twins, and we use a set of monozygotic quadruplets to show that our predictions closely match the consensus method. We demonstrate our method’s versatility by estimating sequencing error rates for whole genome sequencing, whole exome sequencing, and microarray datasets, and we highlight its sensitivity by quantifying performance increases between different versions of the GATK variant-calling pipeline. We then use our method to demonstrate that: 1) Sequencing error rates between samples in the same dataset can vary by over an order of magnitude. 2) Variant calling performance decreases substantially in low-complexity regions of the genome. 3) Variant calling performance in whole exome sequencing data decreases with distance from the nearest target region. 4) Variant calls from lymphoblastoid cell lines can be as accurate as those from whole blood. 5) Whole-genome sequencing can attain microarray-level precision and recall at disease-associated SNV sites. Conclusion Genotype datasets from families are powerful resources that can be used to make fine-grained estimates of sequencing error for any sequencing platform and variant-calling methodology.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yury A. Barbitoff ◽  
Dmitrii E. Polev ◽  
Andrey S. Glotov ◽  
Elena A. Serebryakova ◽  
Irina V. Shcherbakova ◽  
...  

2017 ◽  
Vol 9 (2) ◽  
pp. 143-151 ◽  
Author(s):  
Emilia Niemiec ◽  
Danya F. Vears ◽  
Pascal Borry ◽  
Heidi Carmen Howard

2021 ◽  
Vol 9 ◽  
Author(s):  
Lingxia Zhang ◽  
Ke Huang ◽  
Shugang Wang ◽  
Haidong Fu ◽  
Jingjing Wang ◽  
...  

Gitelman syndrome (GS, OMIM 263800) is a genetic congenital tubulopathy associated with salt loss, which is characterized by hypokalemic metabolic toxicity, hypocalciuria, and hypomagnesemia. GS, which is typically detected in adolescence or adulthood, has long been considered a benign tubular lesion; however, the disease is associated with a significant decrease in the quality of life. In this study, we assessed the genotype–phenotype correlations based on the medical histories, clinical symptoms, laboratory test results, and whole-exome sequencing profiles from pediatric patients with GS. Between January 2014 and December 2020, all 31 consecutively enrolled patients complained of fatigue, salt craving, and muscle weakness. Sixteen patients demonstrated growth retardation, and five patients presented with nocturia and constipation. All patients presented with hypokalemic metabolic alkalosis, normal blood pressure, hyperaldosteronism, and a preserved glomerular filtration rate, and 24 of the 31 (77.4%) patients had hypomagnesemia. Homozygous, compound heterozygous, and heterozygous mutations in SLC12A3 were detected in 4, 24, and 3 patients, respectively. GS patients often present with muscle weakness and fatigue caused by hypokalemia and hypomagnesemia. Therefore, early diagnosis of GS is important in young children to reduce the possibility of growth retardation, tetany, and seizures. Next-generation sequencing such as whole-exome or whole-genome sequencing provides a practical tool for the early diagnosis and improvement of GS prognosis. Further whole-genome sequencing is expected to reveal more variants in SLC123A among GS patients with single heterozygous mutations.


2018 ◽  
Vol 20 (11) ◽  
pp. 1328-1333 ◽  
Author(s):  
Ahmed Alfares ◽  
Taghrid Aloraini ◽  
Lamia Al subaie ◽  
Abdulelah Alissa ◽  
Ahmed Al Qudsi ◽  
...  

Author(s):  
Stefania Bruno ◽  
Nayana Lahiri

To better understand the intricacies of genetic influences on neuropsychiatric disease, it is important first to have a grounding in the models of human inheritance and current diagnostic techniques. This chapter covers the fundamentals of genetic disorders, giving insights into chromosomal, single-gene, and mitochondrial disorders. Moreover, it explores the changing applications of genomic technologies, such as whole exome and whole genome sequencing, through the lens of their implications for neuropsychiatry. Clinical examples are provided to give an idea of the genetic underpinnings of Alzheimer’s disease, Parkinson’s disease, and other familiar disorders.


Sign in / Sign up

Export Citation Format

Share Document