Circulation Genomic and Precision Medicine
Latest Publications


TOTAL DOCUMENTS

449
(FIVE YEARS 293)

H-INDEX

17
(FIVE YEARS 10)

Published By Ovid Technologies Wolters Kluwer -American Heart Association

2574-8300, 2574-8300

Author(s):  
Ke Hao ◽  
Raili Ermel ◽  
Katyayani Sukhavasi ◽  
Haoxiang Cheng ◽  
Lijiang Ma ◽  
...  

Background: Hundreds of candidate genes have been associated with coronary artery disease (CAD) through genome-wide association studies. However, a systematic way to understand the causal mechanism(s) of these genes, and a means to prioritize them for further study, has been lacking. This represents a major roadblock for developing novel disease- and gene-specific therapies for patients with CAD. Recently, powerful integrative genomics analyses pipelines have emerged to identify and prioritize candidate causal genes by integrating tissue/cell-specific gene expression data with genome-wide association studies data sets. Methods: We aimed to develop a comprehensive integrative genomics analyses pipeline for CAD and to provide a prioritized list of causal CAD genes. To this end, we leveraged several complimentary informatics approaches to integrate summary statistics from CAD genome-wide association studies (from UK Biobank and CARDIoGRAMplusC4D) with transcriptomic and expression quantitative trait loci data from 9 cardiometabolic tissue/cell types in the STARNET study (Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task). Results: We identified 162 unique candidate causal CAD genes, which exerted their effect from between one and up to 7 disease-relevant tissues/cell types, including the arterial wall, blood, liver, skeletal muscle, adipose, foam cells, and macrophages. When their causal effect was ranked, the top candidate causal CAD genes were CDKN2B (associated with the 9p21.3 risk locus) and PHACTR1 ; both exerting their causal effect in the arterial wall. A majority of candidate causal genes were represented in cross-tissue gene regulatory co-expression networks that are involved with CAD, with 22/162 being key drivers in those networks. Conclusions: We identified and prioritized candidate causal CAD genes, also localizing their tissue(s) of causal effect. These results should serve as a resource and facilitate targeted studies to identify the functional impact of top causal CAD genes.


Author(s):  
Stacey Peters ◽  
Bryony A. Thompson ◽  
Mark Perrin ◽  
Paul James ◽  
Dominica Zentner ◽  
...  

Background: Variants in the SCN5A gene, that encodes the cardiac sodium channel, Nav1.5, are associated with a highly arrhythmogenic form of dilated cardiomyopathy (DCM). Our aim was to review the phenotypes, natural history, functional effects, and treatment outcomes of DCM-associated rare SCN5A variants. Methods: A systematic review of reported DCM-associated rare SCN5A variants was undertaken using PubMed and Embase. Results: Eighteen SCN5A rare variants in 29 families with DCM (173 affected individuals) were identified. Eleven variants had undergone experimental evaluation, with 7 of these resulting in increased sustained current flow during the action potential (eg, increased window current) and at resting membrane potentials (eg, creation of a new gating pore current). These variants were located in transmembrane voltage-sensing domains and had a consistent phenotype characterized by frequent multifocal narrow and broad complex ventricular premature beats (VPB; 72% of affected relatives), ventricular arrhythmias (33%), atrial arrhythmias (32%), sudden cardiac death (13%), and DCM (56%). This VPB-predominant phenotype was not seen with 1 variant that increased late sodium current, or with variants that reduced peak current density or had mixed effects. In the latter groups, affected individuals mainly showed sinus node dysfunction, conduction defects, and atrial arrhythmias, with infrequent VPB and VA. DCM did not occur in the absence of arrhythmias for any variant. Twelve studies (23 total patients) reported treatment success in the VPB-predominant cardiomyopathy using sodium channel-blocking drug therapy. Conclusions: SCN5A variants can present with a diverse spectrum of primary arrhythmic features. A majority of DCM-associated variants cause a multifocal VPB-predominant cardiomyopathy that is reversible with sodium channel blocking drug therapy. Early recognition of the distinctive phenotype and prompt genetic testing to identify variant carriers are needed. Our findings have implications for interpretation and management of SCN5A variants found in DCM patients with and without arrhythmias.


Author(s):  
Julian O.M. Ormerod ◽  
Elizabeth Ormondroyd ◽  
Yanhui Li ◽  
John Taylor ◽  
Jinhong Wei ◽  
...  

Background: A novel familial arrhythmia syndrome, RyR2 calcium release deficiency syndrome (CRDS), has recently been described. We evaluated a large and well characterized family to assess provocation testing, risk factor stratification and response to therapy in CRDS. Methods: We present a family with multiple unheralded sudden cardiac deaths and aborted cardiac arrests, primarily in children and young adults, with no clear phenotype on standard clinical testing. Results: Genetic analysis, including whole genome sequencing, firmly established that a missense mutation in RYR2 , Ala4142Thr, was the underlying cause of disease in the family. Functional study of the variant in a cell model showed RyR2 loss-of-function, indicating that the family was affected by CRDS. EPS (Electrophysiological Study) was undertaken in 9 subjects known to carry the mutation, including a survivor of aborted sudden cardiac death, and the effects of flecainide alone and in combination with metoprolol were tested. There was a clear gradation in inducibility of nonsustained and sustained ventricular arrhythmia between subjects at EPS, with the survivor of aborted sudden cardiac death being the most inducible subject. Administration of flecainide substantially reduced arrhythmia inducibility in this subject and abolished arrhythmia in all others. Finally, the effects of additional metoprolol were tested; it increased inducibility in 4/9 subjects. Conclusions: The Ala4142Thr mutation of RYR2 causes the novel heritable arrhythmia syndrome CRDS, which is characterized by familial sudden death in the absence of prior symptoms or a recognizable phenotype on ambulatory monitoring or exercise stress testing. We increase the experience of a specific EPS protocol in human subjects and show that it is helpful in establishing the clinical status of gene carriers, with potential utility for risk stratification. Our data provide evidence that flecainide is protective in human subjects with CRDS, consistent with the effect previously shown in a mouse model.


Author(s):  
Raquel Neves ◽  
David J. Tester ◽  
Michael A. Simpson ◽  
Elijah R. Behr ◽  
Michael J. Ackerman ◽  
...  

Background: Sudden cardiac arrest (SCA) and sudden unexplained death (SUD) are feared sequelae of many genetic heart diseases. In rare circumstances, pathogenic variants in cardiomyopathy-susceptibility genes may result in electrical instability leading to SCA/SUD before any structural manifestations of underlying cardiomyopathy are evident. Methods: Collectively, 38 unexplained SCA survivors (21 males; mean age at SCA 26.4±13.1 years), 68 autopsy-inconclusive SUD cases (49 males; mean age at death 20.4±9.0 years) without disease-causative variants in the channelopathy genes, and 973 ostensibly healthy controls were included. Following exome sequencing, ultrarare (minor allele frequency ≤0.00005 in any ethnic group within Genome Aggregation Database [gnomAD, n=141 456 individuals]) nonsynonymous variants identified in 24 ClinGen adjudicated definitive/strong evidence cardiomyopathy-susceptibility genes were analyzed. Eligible variants were adjudicated as pathogenic, likely pathogenic, or variant of uncertain significance in accordance with current American College of Medical Genetics and Genomics guidelines. Results: Overall, 7 out of 38 (18.4%) SCA survivors and 14 out of 68 (20.5%) autopsy-inconclusive, channelopathic-negative SUD cases had at least one pathogenic/likely pathogenic or a variant of uncertain significance nonsynonymous variant within a strong evidence, cardiomyopathy-susceptibility gene. Following American College of Medical Genetics and Genomics criterion variant adjudication, a pathogenic or likely pathogenic variant was identified in 3 out of 38 (7.9%; P =0.05) SCA survivors and 8 out of 68 (11.8%; P =0.0002) autopsy-inconclusive SUD cases compared to 20 out of 973 (2.1%) European controls. Interestingly, the yield of pathogenic/likely pathogenic variants was significantly greater in autopsy-inconclusive SUD cases with documented interstitial fibrosis (4/11, 36%) compared with only 4 out of 57 (7%, P <0.02) SUD cases without ventricular fibrosis. Conclusion: Our data further supports the inclusion of strongevidence cardiomyopathy-susceptibility genes on the genetic testing panels used to evaluate unexplained SCA survivors and autopsy-inconclusive/negative SUD decedents. However, to avoid diagnostic miscues, the careful interpretation of genetic test results in patients without overt phenotypes is vital.


Author(s):  
Johannes T. Neumann ◽  
Moeen Riaz ◽  
Andrew Bakshi ◽  
Galina Polekhina ◽  
Le T.P. Thao ◽  
...  

Background: The use of a polygenic risk score (PRS) to improve risk prediction of coronary heart disease (CHD) events has been demonstrated to have clinical utility in the general adult population. However, the prognostic value of a PRS for CHD has not been examined specifically in older populations of individuals aged ≥70 years, who comprise a distinct high-risk subgroup. The objective of this study was to evaluate the predictive value of a PRS for incident CHD events in a prospective cohort of older individuals without a history of cardiovascular events. Methods: We used data from 12 792 genotyped, healthy older individuals enrolled into the ASPREE trial (Aspirin in Reducing Events in the Elderly), a randomized double-blind placebo-controlled clinical trial investigating the effect of daily 100 mg aspirin on disability-free survival. Participants had no previous history of diagnosed atherothrombotic cardiovascular events, dementia, or persistent physical disability at enrollment. We calculated a PRS (meta-genomic risk score) consisting of 1.7 million genetic variants. The primary outcome was a composite of incident myocardial infarction or CHD death over 5 years. Results: At baseline, the median population age was 73.9 years, and 54.9% were female. In total, 254 incident CHD events occurred. When the PRS was added to conventional risk factors, it was independently associated with CHD (hazard ratio, 1.24 [95% CI, 1.08–1.42], P =0.002). The area under the curve of the conventional model was 70.53 (95% CI, 67.00–74.06), and after inclusion of the PRS increased to 71.78 (95% CI, 68.32–75.24, P =0.019), demonstrating improved prediction. Reclassification was also improved, as the continuous net reclassification index after adding PRS to the conventional model was 0.25 (95% CI, 0.15–0.28). Conclusion: A PRS for CHD performs well in older people and improves prediction over conventional cardiovascular risk factors. Our study provides evidence that genomic risk prediction for CHD has clinical utility in individuals aged 70 years and older. REGISTRATION: URL: https://www.clinicaltrials.gov ; Unique identifier: NCT01038583


Author(s):  
Malene E. Lindholm ◽  
David Jimenez-Morales ◽  
Han Zhu ◽  
Kinya Seo ◽  
David Amar ◽  
...  

Background: ACTN2 (alpha-actinin 2) anchors actin within cardiac sarcomeres. The mechanisms linking ACTN2 mutations to myocardial disease phenotypes are unknown. Here, we characterize patients with novel ACTN2 mutations to reveal insights into the physiological function of ACTN2. Methods: Patients harboring ACTN2 protein-truncating variants were identified using a custom mutation pipeline. In patient-derived iPSC-cardiomyocytes, we investigated transcriptional profiles using RNA sequencing, contractile properties using video-based edge detection, and cellular hypertrophy using immunohistochemistry. Structural changes were analyzed through electron microscopy. For mechanistic studies, we used coimmunoprecipitation for ACTN2, followed by mass-spectrometry to investigate protein-protein interaction, and protein tagging followed by confocal microscopy to investigate introduction of truncated ACTN2 into the sarcomeres. Results: Patient-derived iPSC-cardiomyocytes were hypertrophic, displayed sarcomeric structural disarray, impaired contractility, and aberrant Ca 2+ -signaling. In heterozygous indel cells, the truncated protein incorporates into cardiac sarcomeres, leading to aberrant Z-disc ultrastructure. In homozygous stop-gain cells, affinity-purification mass-spectrometry reveals an intricate ACTN2 interactome with sarcomere and sarcolemma-associated proteins. Loss of the C-terminus of ACTN2 disrupts interaction with ACTN1 and GJA1, 2 sarcolemma-associated proteins, which may contribute to the clinical arrhythmic and relaxation defects. The causality of the stop-gain mutation was verified using CRISPR-Cas9 gene editing. Conclusions: Together, these data advance our understanding of the role of ACTN2 in the human heart and establish recessive inheritance of ACTN2 truncation as causative of disease.


Author(s):  
Cristina Balla ◽  
Daniela Mele ◽  
Francesco Vitali ◽  
Chiara Andreoli ◽  
Elisabetta Tonet ◽  
...  

Author(s):  
Nels C. Olson ◽  
Laura M. Raffield ◽  
Anne H. Moxley ◽  
Tyne W. Miller-Fleming ◽  
Paul L. Auer ◽  
...  

Background: suPAR (Soluble urokinase plasminogen activator receptor) has emerged as an important biomarker of coagulation, inflammation, and cardiovascular disease (CVD) risk. The contribution of suPAR to CVD risk and its genetic influence in the Black population have not been evaluated. Methods: We measured suPAR in 3492 Blacks from the prospective, community-based JHS (Jackson Heart Study). Cross-sectional associations of suPAR with lifestyle and CVD risk factors were assessed, whole-genome sequence data were used to evaluate genetic associations of suPAR, and relationships of suPAR with incident CVD outcomes and overall mortality were estimated over follow-up. Results: In Cox models adjusted for traditional CVD risk factors, estimated glomerular filtration rate, and CRP (C-reactive protein), each 1-SD higher suPAR was associated with a 21% to 31% increased risk of incident coronary heart disease, heart failure, stroke, and mortality. In the genome-wide association study, 2 missense (rs399145 encoding p.Thr86Ala, rs4760 encoding p.Phe272Leu) and 2 noncoding regulatory variants (rs73935023 within an enhancer element and rs4251805 within the promoter) of PLAUR on chromosome 19 were each independently associated with suPAR and together explained 14% of suPAR phenotypic variation. The allele frequencies of each of the four suPAR-associated genetic variants differ considerably across African and European populations. We further show that PLAUR rs73935023 can alter transcriptional activity in vitro. We did not find any association between genetically determined suPAR and CVD in JHS or a larger electronic medical record-based analyses of Blacks or Whites. Conclusions: Our results demonstrate the importance of ancestry-differentiated genetic variation on suPAR levels and indicate suPAR is a CVD biomarker in Black adults.


Author(s):  
Asma Amrani-Midoun ◽  
David Adlam ◽  
Nabila Bouatia-Naji

Spontaneous coronary artery dissection (SCAD) has been acknowledged as a significant cause of acute myocardial infarction, predominantly in young to middle-aged women. SCAD often occurs in patients with fewer cardiovascular risk factors than atherosclerotic acute myocardial infarction. Unfortunately, SCAD remains underdiagnosed due to a lack of awareness among health care providers leading to misdiagnosis. The underlying pathophysiological mechanisms of SCAD are not well understood. SCAD occurring in members of the same family has been described, suggesting a potentially identifiable genetically triggered cause in at least some cases. However, thus far, the search for highly penetrant mutations in candidate pathways has had a low yield, often pointing to genes involved in other clinically undiagnosed hereditary syndromes manifesting as SCAD. Recent exploratory efforts using exome sequencing and genome-wide association studies have provided several interesting leads toward understanding the pathogenesis of SCAD. Here, we review recent publications where rare and common genetic factors were reported to associate with a predisposition to SCAD and indicate suggestions for the future strategies and approaches needed to fully address the genetic basis of this intriguing and atypical cause of acute myocardial infarction.


Author(s):  
Vibhu Parcha ◽  
Brittain F. Heindl ◽  
Peng Li ◽  
Rajat Kalra ◽  
Nita A. Limdi ◽  
...  

Background: Among patients receiving percutaneous coronary intervention (PCI), the role of a genotype-guided approach for antiplatelet therapy compared with usual care is unclear. We conducted a Bayesian analysis of the entire TAILOR-PCI (Tailored Antiplatelet Initiation to Lessen Outcomes Due to Decreased Clopidogrel Response After Percutaneous Coronary Intervention) randomized clinical trial population to evaluate the effect of the genotype-guided antiplatelet therapy post-PCI compared with the usual care on the risk of major adverse cardiovascular events (MACE). Methods: The primary outcome for our study was the composite of MACE (myocardial infarction, stroke, and cardiovascular death). Secondary outcomes included cardiovascular death, stroke, myocardial infarction, stent thrombosis, and major/minor bleeding. Bayesian modeling was used to estimate the probability of clinical benefit of genotype-guided therapy using (1) noninformative priors (ie, analyzing the TAILOR-PCI trial) and (2) informative priors derived from the ADAPT, POPular Genetics, IAC-PCI, and PHARMCLO trials (ie, analyzing TAILOR-PCI trial in the context of prior evidence). Risk ratio (RR: ratio of cumulative outcome incidence between genotype-guided and conventional therapy group) and 95% credible interval (CrI) were estimated for the study outcomes, and probability estimates for RR <1 were computed. Results: Using noninformative priors, in TAILOR-PCI the RR for MACE was 0.78 (95% CrI, 0.55–1.07) in genotype-guided therapy after PCI, and the probability of RR <1 was 94%. Using noninformative priors, the probability of RR <1 for cardiovascular death (RR, 0.95 [95% CrI, 0.52–1.74]), stroke (RR, 0.68 [95% CrI, 0.44–1.06]), myocardial infarction (RR, 0.84 [95% CrI, 0.37–1.89]), stent thrombosis (RR, 0.75 [95% CrI, 0.37–1.45]), and major or minor bleeding (RR, 1.22 [95% CrI, 0.84–1.77]) were 57%, 96%, 67%, 94%, and 15%, respectively. Using informative priors, the posterior probability of RR <1 for MACE, from genotype-guided therapy, was 99% (RR, 0.69 [95% CrI, 0.57–0.84]). Using informative priors, the posterior probability of RR <1 for cardiovascular death (RR, 0.86 [95% CrI, 0.61–1.19]), stroke (RR, 0.69 [95% CrI, 0.48–0.99]), myocardial infarction (RR:0.56 [95% CrI, 0.40–0.78]), stent thrombosis (RR, 0.59 [95% CrI, 0.38–0.94]), and major or minor bleeding (RR, 0.84 [95% CrI, 0.70–0.99]) were 81%, 99%, 99%, 99%, and 99%, respectively. Conclusions: Bayesian analysis of the TAILOR-PCI trial provides clinically meaningful data on the posterior probability of reducing MACE using genotype-guided P2Y 12 inhibitor therapy after PCI.


Sign in / Sign up

Export Citation Format

Share Document