B42 Huntington Disease and Olfactory Dysfunction: Structural Abnormalities of the Olfactory System and Early Caspase Activation in the Olfactory Bulb are Observed in HD Mouse Models

2014 ◽  
Vol 85 (Suppl 1) ◽  
pp. A23-A24
Author(s):  
M. Laroche ◽  
M. Demers ◽  
M. Lessard-Beaudoin ◽  
M. Garcia-Miralles ◽  
C. Kreidy ◽  
...  
2020 ◽  
Vol 29 (13) ◽  
pp. 2134-2147
Author(s):  
M Laroche ◽  
M Lessard-Beaudoin ◽  
M Garcia-Miralles ◽  
C Kreidy ◽  
E Peachey ◽  
...  

Abstract Olfactory dysfunction and altered neurogenesis are observed in several neurodegenerative disorders including Huntington disease (HD). These deficits occur early and correlate with a decline in global cognitive performance, depression and structural abnormalities of the olfactory system including the olfactory epithelium, bulb and cortices. However, the role of olfactory system dysfunction in the pathogenesis of HD remains poorly understood and the mechanisms underlying this dysfunction are unknown. We show that deficits in odour identification, discrimination and memory occur in HD individuals. Assessment of the olfactory system in an HD murine model demonstrates structural abnormalities in the olfactory bulb (OB) and piriform cortex, the primary cortical recipient of OB projections. Furthermore, a decrease in piriform neuronal counts and altered expression levels of neuronal nuclei and tyrosine hydroxylase in the OB are observed in the YAC128 HD model. Similar to the human HD condition, olfactory dysfunction is an early phenotype in the YAC128 mice and concurrent with caspase activation in the murine HD OB. These data provide a link between the structural olfactory brain region atrophy and olfactory dysfunction in HD and suggest that cell proliferation and cell death pathways are compromised and may contribute to the olfactory deficits in HD.


2020 ◽  
Author(s):  
Gowoon Son ◽  
Seung-Jun Yoo ◽  
Shinwoo Kang ◽  
Ameer Rasheed ◽  
Da Hae Jung ◽  
...  

Abstract Background: Hyposmia in Alzheimer’s disease (AD) is a typical early symptom according to numerous previous clinical studies. Although the causes of damage have been proposed in every olfactory system including olfactory epithelium, olfactory bulb and olfactory cortex, the main causes of AD- related hyposmia are largely unknown. Methods: We here focused on peripheral olfactory sensory neurons (OSNs) and delved deeper into the direct relationship between pathophysiological and behavioral results using odorants. We also histologically confirmed the pathological changes in three-month-old 5xFAD mouse models which recapitulates AD pathology. We introduced a numeric scale histologically to compare physiological phenomenon and local tissue lesions regardless of anatomical plane. Results: We observed the odorant group, which 5xFAD mouse could not detect, also neither did physiologically activate the OSNs that propagate to the ventral olfactory bulb. Interestingly, the amount of accumulated amyloid-β (Aβ) was high in the ecto-ventrally located OSNs that showed reduced responses to odorants. We also observed irreversible damage to the ecto-region of the olfactory epithelium by measuring impaired neuronal turnover ratio from the basal cells to the matured OSNs. Conclusions: Our results showed that partial and asymmetrical accumulation of Aβ coincided with physiologically and structurally damaged areas in the peripheral olfactory system, which evoked hyporeactivity to some odorants. Taken together, partial olfactory dysfunction closely-associated with peripheral OSN’s loss could be a leading cause of the AD-related hyposmia, a characteristic of early AD.


2019 ◽  
Vol 125 ◽  
pp. 219-231 ◽  
Author(s):  
M. Lessard-Beaudoin ◽  
L. Yu-Taeger ◽  
M. Laroche ◽  
E. Singer ◽  
O. Riess ◽  
...  

2015 ◽  
Vol 112 (41) ◽  
pp. 12846-12851 ◽  
Author(s):  
Filomene G. Morrison ◽  
Brian G. Dias ◽  
Kerry J. Ressler

Although much work has investigated the contribution of brain regions such as the amygdala, hippocampus, and prefrontal cortex to the processing of fear learning and memory, fewer studies have examined the role of sensory systems, in particular the olfactory system, in the detection and perception of cues involved in learning and memory. The primary sensory receptive field maps of the olfactory system are exquisitely organized and respond dynamically to cues in the environment, remaining plastic from development through adulthood. We have previously demonstrated that olfactory fear conditioning leads to increased odorant-specific receptor representation in the main olfactory epithelium and in glomeruli within the olfactory bulb. We now demonstrate that olfactory extinction training specific to the conditioned odor stimulus reverses the conditioning-associated freezing behavior and odor learning-induced structural changes in the olfactory epithelium and olfactory bulb in an odorant ligand-specific manner. These data suggest that learning-induced freezing behavior, structural alterations, and enhanced neural sensory representation can be reversed in adult mice following extinction training.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Gowoon Son ◽  
Seung-Jun Yoo ◽  
Shinwoo Kang ◽  
Ameer Rasheed ◽  
Da Hae Jung ◽  
...  

Abstract Background Hyposmia in Alzheimer’s disease (AD) is a typical early symptom according to numerous previous clinical studies. Although amyloid-β (Aβ), which is one of the toxic factors upregulated early in AD, has been identified in many studies, even in the peripheral areas of the olfactory system, the pathology involving olfactory sensory neurons (OSNs) remains poorly understood. Methods Here, we focused on peripheral olfactory sensory neurons (OSNs) and delved deeper into the direct relationship between pathophysiological and behavioral results using odorants. We also confirmed histologically the pathological changes in 3-month-old 5xFAD mouse models, which recapitulates AD pathology. We introduced a numeric scale histologically to compare physiological phenomenon and local tissue lesions regardless of the anatomical plane. Results We observed the odorant group that the 5xFAD mice showed reduced responses to odorants. These also did not physiologically activate OSNs that propagate their axons to the ventral olfactory bulb. Interestingly, the amount of accumulated amyloid-β (Aβ) was high in the OSNs located in the olfactory epithelial ectoturbinate and the ventral olfactory bulb glomeruli. We also observed irreversible damage to the ectoturbinate of the olfactory epithelium by measuring the impaired neuronal turnover ratio from the basal cells to the matured OSNs. Conclusions Our results showed that partial and asymmetrical accumulation of Aβ coincided with physiologically and structurally damaged areas in the peripheral olfactory system, which evoked hyporeactivity to some odorants. Taken together, partial olfactory dysfunction closely associated with peripheral OSN’s loss could be a leading cause of AD-related hyposmia, a characteristic of early AD.


2021 ◽  
Vol 11 (6) ◽  
pp. 686
Author(s):  
Tom Wai-Hin Chung ◽  
Hui Zhang ◽  
Fergus Kai-Chuen Wong ◽  
Siddharth Sridhar ◽  
Kwok-Hung Chan ◽  
...  

Non-conductive olfactory dysfunction (OD) is an important extra-pulmonary manifestation of coronavirus disease 2019 (COVID-19). Olfactory bulb (OB) volume loss and olfactory network functional connectivity (FC) defects were identified in two patients suffering from prolonged COVID-19-related OD. One patient received olfactory treatment (OT) by the combination of oral vitamin A and smell training via the novel electronic portable aromatic rehabilitation (EPAR) diffusers. After four-weeks of OT, clinical recuperation of smell was correlated with interval increase of bilateral OB volumes [right: 22.5 mm3 to 49.5 mm3 (120%), left: 37.5 mm3 to 42 mm3 (12%)] and improvement of mean olfactory FC [0.09 to 0.15 (66.6%)].


PLoS ONE ◽  
2016 ◽  
Vol 11 (12) ◽  
pp. e0165230
Author(s):  
Zu Soh ◽  
Shinya Nishikawa ◽  
Yuichi Kurita ◽  
Noboru Takiguchi ◽  
Toshio Tsuji

1956 ◽  
Vol 186 (2) ◽  
pp. 255-257 ◽  
Author(s):  
Raymond R. Walsh

Studies of single-cell spike discharges in the olfactory bulb of the rabbit indicate the presence of three classes of neurons as characterized by their discharge patterns. Cells of class I discharge continuously and spontaneously; class II cells discharge intermittently in bursts, in synchrony with the passage of air through the nose. Cells of classes I and II are unmodified during olfactory stimulation. It appears there are many cells in the olfactory bulb whose discharge patterns are unrelated to excitation of the olfactory receptors by odors. Cells of class III respond to appropriate odors; the response of such cells to some odors and not others indicates that odor specificity is a fundamental characteristic of the olfactory system.


Sign in / Sign up

Export Citation Format

Share Document