scholarly journals Afferents contributing to the exaggerated long latency reflex response to electrical stimulation in Parkinson's disease.

1988 ◽  
Vol 51 (11) ◽  
pp. 1405-1410 ◽  
Author(s):  
J P Hunter ◽  
P Ashby ◽  
A E Lang
2020 ◽  
pp. 026921552097251
Author(s):  
Paul N Taylor ◽  
Trish Sampson ◽  
Ben Beare ◽  
Maggie Donavon-Hall ◽  
Peter W Thomas ◽  
...  

Objectives: To assess the feasibility of a multi-site randomised controlled trial to evaluate the effect of functional electrical stimulation on bradykinesia in people with Parkinson’s disease. Design: A two-arm assessor blinded randomised controlled trial with an 18 weeks intervention period and 4 weeks post-intervention follow-up. Setting: Two UK hospitals; a therapy outpatient department in a district general hospital and a specialist neuroscience centre. Participants: A total of 64 participants with idiopathic Parkinson’s disease and slow gait <1.25 ms−1. Interventions: Functional electrical stimulation delivered to the common peroneal nerve while walking in addition to standard care compared with standard care alone. Main measures: Feasibility aims included the determination of sample size, recruitment and retention rates, acceptability of the protocol and confirmation of the primary outcome measure. The outcome measures were 10 m walking speed, Unified Parkinson’s Disease Rating Scale (UPDRS), Mini Balance Evaluation Systems Test, Parkinson’s Disease Questionnaire-39, EuroQol 5-dimension 5-level, New Freezing of Gait questionnaire, Falls Efficacy Score International and falls diary. Participants opinion on the study design and relevance of outcome measures were evaluated using an embedded qualitative study. Results: There was a mean difference between groups of 0.14 ms−1 (CI 0.03, 0.26) at week 18 in favour of the treatment group, which was maintained at week 22, 0.10 ms−1 (CI –0.05, 0.25). There was a mean difference in UPDRS motor examination score of –3.65 (CI –4.35, 0.54) at week 18 which was lost at week 22 –0.91 (CI –2.19, 2.26). Conclusion: The study design and intervention were feasible and supportive for a definitive trial. While both the study protocol and intervention were acceptable, recommendations for modifications are made.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Lois Rosenthal ◽  
Dean Sweeney ◽  
Anne-Louise Cunnington ◽  
Leo R. Quinlan ◽  
Gearóid ÓLaighin

Introduction. Freezing of gait (FoG) is a movement abnormality that presents with advancing Parkinson’s disease (PD) and is one of the most debilitating symptoms of the disease. The mainstay of nonpharmacological management of FoG is typically through external cueing techniques designed to relieve or prevent the freezing episode. Previous work shows that electrical stimulation may prove useful as a gait guidance technique, but further evidence is required. The main objective of this study was to determine whether a “fixed” rhythmic sensory electrical stimulation (sES) cueing strategy would significantly (i) reduce the time taken to complete a walking task and (ii) reduce the number of FoG episodes occurring when performing the task. Methods. 9 participants with idiopathic PD performed a self-identified walking task during both control (no cue) and cueing conditions. The self-identified walking task was a home-based daily walking activity, which was known to result in FoG for that person. A trained physiotherapist recorded the time taken to complete the walking task and the number of FoG episodes which occurred during the task. Data were analyzed by paired t-tests for both the time to complete a walking task and the number of FoG episodes occurring. Results. sES cueing resulted in a reduction in the time taken to complete a walking task and in the number of FoG episodes occurring during performance of this task by 14.23 ± 11.15% (p=0.009) and 58.28 ± 33.89% (p=0.002), respectively. Conclusions. This study shows a positive effect of “fixed” rhythmic sES on the time taken to complete a walking task and on the number of FoG episodes occurring during the task. Our results provide evidence that sES cueing delivered in a “fixed” rhythmic manner has the potential to be an effective cueing mechanism for FoG prevention.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hyunglae Lee ◽  
Eric J. Perreault

Abstract Responses elicited after the shortest latency spinal reflexes but prior to the onset of voluntary activity can display sophistication beyond a stereotypical reflex. Two distinct behaviors have been identified for these rapid motor responses, often called long-latency reflexes. The first is to maintain limb stability by opposing external perturbations. The second is to quickly release motor actions planned prior to the disturbance, often called a triggered reaction. This study investigated their interaction when motor tasks involve both limb stabilization and motor planning. We used a robotic manipulator to change the stability of the haptic environment during 2D arm reaching tasks, and to apply perturbations that could elicit rapid motor responses. Stabilizing reflexes were modulated by the orientation of the haptic environment (field effect) whereas triggered reactions were modulated by the target to which subjects were instructed to reach (target effect). We observed that there were no significant interactions between the target and field effects in the early (50–75 ms) portion of the long-latency reflex, indicating that these components of the rapid motor response are initially controlled independently. There were small but significant interactions for two of the six relevant muscles in the later portion (75–100 ms) of the reflex response. In addition, the target effect was influenced by the direction of the perturbation used to elicit the motor response, indicating a later feedback correction in addition to the early component of the triggered reaction. Together, these results demonstrate how distinct components of the long-latency reflex can work independently and together to generate sophisticated rapid motor responses that integrate planning with reaction to uncertain conditions.


2021 ◽  
Vol 87 ◽  
pp. 73-81
Author(s):  
Dean Sweeney ◽  
Leo R. Quinlan ◽  
Patrick Browne ◽  
Timothy Counihan ◽  
Alejandro Rodriguez-Molinero ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document