scholarly journals Lewy body cortical involvement may not always predict dementia in Parkinson's disease

2003 ◽  
Vol 74 (7) ◽  
pp. 852-856 ◽  
Author(s):  
C Colosimo
Author(s):  
Rahel Feleke ◽  
Regina H. Reynolds ◽  
Amy M. Smith ◽  
Bension Tilley ◽  
Sarah A. Gagliano Taliun ◽  
...  

AbstractParkinson’s disease (PD), Parkinson’s disease with dementia (PDD) and dementia with Lewy bodies (DLB) are three clinically, genetically and neuropathologically overlapping neurodegenerative diseases collectively known as the Lewy body diseases (LBDs). A variety of molecular mechanisms have been implicated in PD pathogenesis, but the mechanisms underlying PDD and DLB remain largely unknown, a knowledge gap that presents an impediment to the discovery of disease-modifying therapies. Transcriptomic profiling can contribute to addressing this gap, but remains limited in the LBDs. Here, we applied paired bulk-tissue and single-nucleus RNA-sequencing to anterior cingulate cortex samples derived from 28 individuals, including healthy controls, PD, PDD and DLB cases (n = 7 per group), to transcriptomically profile the LBDs. Using this approach, we (i) found transcriptional alterations in multiple cell types across the LBDs; (ii) discovered evidence for widespread dysregulation of RNA splicing, particularly in PDD and DLB; (iii) identified potential splicing factors, with links to other dementia-related neurodegenerative diseases, coordinating this dysregulation; and (iv) identified transcriptomic commonalities and distinctions between the LBDs that inform understanding of the relationships between these three clinical disorders. Together, these findings have important implications for the design of RNA-targeted therapies for these diseases and highlight a potential molecular “window” of therapeutic opportunity between the initial onset of PD and subsequent development of Lewy body dementia.


Author(s):  
Maarten C Hardenberg ◽  
Tessa Sinnige ◽  
Sam Casford ◽  
Samuel Dada ◽  
Chetan Poudel ◽  
...  

Abstract Misfolded α-synuclein is a major component of Lewy bodies, which are a hallmark of Parkinson’s disease. A large body of evidence shows that α-synuclein can aggregate into amyloid fibrils, but the relationship between α-synuclein self-assembly and Lewy body formation remains unclear. Here we show, both in vitro and in a Caenorhabditis elegans model of Parkinson’s disease, that α-synuclein undergoes liquid‒liquid phase separation by forming a liquid droplet state, which converts into an amyloid-rich hydrogel with Lewy-body-like properties. This maturation process towards the amyloid state is delayed in the presence of model synaptic vesicles in vitro. Taken together, these results suggest that the formation of Lewy bodies may be linked to the arrested maturation of α-synuclein condensates in the presence of lipids and other cellular components.


2008 ◽  
Vol 2 (4) ◽  
pp. 261-266
Author(s):  
Jorge Lorenzo Otero

Abstract Dementia with Parkinson's disease represents a controversial issue in the complex group of alpha-synucleinopathies. The author acknowledges the concept of a "continuum" between Parkinson disease's (PD), Lewy body dementia (LBD), and dementia in Parkinson's disease (PDD). However, the practicing neurologist needs to identify the phenotypic signs of each dementia. The treatment and prognosis are different in spite of the overlaps between them. The main aim of this review was to characterize the clinical diagnoses of dementia associated with Parkinson's disease (PDD). Secondarily, the review discussed some epidemiological and neuropsychological issues. Selection of articles was not systematic and reflects the author's opinion, where the main text selected was the recommendations from the Movement Disorder Society Task Force for PDD diagnosis. The Pub Med, OVID, and Proquest data bases were used for the search.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Yoshiki Takamatsu ◽  
Masayo Fujita ◽  
Gilbert J. Ho ◽  
Ryoko Wada ◽  
Shuei Sugama ◽  
...  

Lewy body diseases, such as Parkinson’s disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA), are associated with a wide range of nonmotor symptoms (NMS), including cognitive impairment, depression and anxiety, sleep disorders, gastrointestinal symptoms, and autonomic failure. The reason why such diverse and disabling NMS have not been weeded out but have persisted across evolution is unknown. As such, one possibility would be that the NMS might be somehow beneficial during development and/or reproductive stages, a possibility consistent with our recent view as to the evolvability of amyloidogenic proteins (APs) such as α-synuclein (αS) and amyloid-β (Aβ) in the brain. Based on the heterogeneity of protofibrillar AP forms in terms of structure and cytotoxicity, we recently proposed that APs might act as vehicles to deliver information regarding diverse internal and environmental stressors. Also, we defined evolvability to be an epigenetic phenomenon whereby APs are transgenerationally transmitted from parents to offspring to cope with future brain stressors in the offspring, likely benefitting the offspring. In this context, the main objective is to discuss whether NMS might be relevant to evolvability. According to this view, information regarding NMS may be transgenerationally transmitted by heterogeneous APs to offspring, preventing or attenuating the stresses related to such symptoms. On the other hand, NMS associated with Lewy body pathology might manifest through an aging-associated antagonistic pleiotropy mechanism. Given that NMS are not only specific to Lewy body diseases but also displayed in other disorders, including amyotrophic lateral sclerosis (ALS) and Huntington’s disease (HD), these conditions might share common mechanisms related to evolvability. This might give insight into novel therapy strategies based on antagonistic pleiotropy rather than on individual NMS from which to develop disease-modifying therapies.


Author(s):  
Zhao-Feng Li ◽  
Lei Cui ◽  
Mi-Mi Jin ◽  
Dong-Yan Hu ◽  
Xiao-Gang Hou ◽  
...  

Parkinson's disease (PD) is featured with α-synuclein-based Lewy body pathology, which however was difficult to observe in conventional two-dimensional (2D) cell culture and even in animal models. We herein aimed to develop a three-dimensional (3D) cellular model of PD to recapitulate the α-synuclein pathologies. All-trans-retinoic acid-differentiated human SH-SY5Y cells and Matrigel were optimized for 3D construction. The 3D cultured cells displayed higher tyrosine hydroxylase expression and improved dopaminergic-like phenotypes than 2D cells as suggested by RNA-sequencing analyses. Multiple forms of α-synuclein, including monomer, low and high molecular weight oligomers, were differentially present in the 2D and 3D cells, but mostly remained unchanged upon the MPP+ or rotenone treatment. Phosphorylated α-synuclein was accumulated and detergent-insoluble α-synuclein fraction was observed in the neurotoxin-treated 3D cells. Importantly, Lewy body-like inclusions were captured in the 3D system, including proteinase K-resistant α-synuclein aggregates, ubiquitin aggregation, β-amyloid and β-sheet protein deposition. The study provides a unique and convenient 3D model of PD which recapitulates critical α-synuclein pathologies and should be useful in multiple PD-associated applications.


Sign in / Sign up

Export Citation Format

Share Document