scholarly journals ‘Yes’ to mitochondrial replacement techniques and lesbian motherhood: a reply to Françoise Baylis

2018 ◽  
Vol 45 (4) ◽  
pp. 280-281
Author(s):  
César Palacios-González ◽  
Giulia Cavaliere

In a recent paper – Lesbian motherhood and mitochondrial replacement techniques: reproductive freedom and genetic kinship – we argued that lesbian couples who wish to have children who are genetically related to both of them should be allowed access to mitochondrial replacement techniques (MRTs). Françoise Baylis wrote a reply to our paper –‘No’ to lesbian motherhood using human nuclear genome transfer– where she challenges our arguments on the use of MRTs by lesbian couples, and on MRTs more generally. In this reply we respond to her claims and further clarify our position.

2018 ◽  
Vol 44 (12) ◽  
pp. 835-842 ◽  
Author(s):  
Giulia Cavaliere ◽  
César Palacios-González

In this paper, we argue that lesbian couples who wish to have children who are genetically related to both of them should be allowed access to mitochondrial replacement techniques (MRTs). First, we provide a brief explanation of mitochondrial diseases and MRTs. We then present the reasons why MRTs are not, by nature, therapeutic. The upshot of the view that MRTs are non-therapeutic techniques is that their therapeutic potential cannot be invoked for restricting their use only to those cases where a mitochondrial DNA disease could be ‘cured’. We then argue that a positive case for MRTs is justified by an appeal to reproductive freedom, and that the criteria to access these techniques should hence be extended to include lesbian couples who wish to share genetic parenthood. Finally, we consider a potential objection to our argument: that the desire to have genetically related kin is not a morally sufficient reason to allow lesbian couples to access MRTs.


2018 ◽  
Vol 44 (12) ◽  
pp. 865-867 ◽  
Author(s):  
Françoise Baylis

Giulia Cavaliere and César Palacios-González argue that lesbian couples should have access to human nuclear genome transfer (so-called mitochondrial replacement) so that both members of the couple can have a genetic link to the child they intend to parent. Their argument is grounded in an appeal to reproductive freedom. In this Response, I address a number of concerns with their argument. These concerns relate to nomenclature, treating like cases alike, genetic-relatedness and the limits of reproductive rights. On this last point, I insist that we should not mistake ‘wants’ for ‘needs’ or ‘rights’. I maintain that there is no right to biological parenthood, there is no compelling need for human nuclear genome transfer to satisfy a so-called need for genetically-related children, and we ought not to pander to an acquired desire (ie, want) for genetic filiation.


Genetics ◽  
2003 ◽  
Vol 164 (4) ◽  
pp. 1511-1518 ◽  
Author(s):  
Ning Yu ◽  
Michael I Jensen-Seaman ◽  
Leona Chemnick ◽  
Judith R Kidd ◽  
Amos S Deinard ◽  
...  

Abstract Comparison of the levels of nucleotide diversity in humans and apes may provide much insight into the mechanisms of maintenance of DNA polymorphism and the demographic history of these organisms. In the past, abundant mitochondrial DNA (mtDNA) polymorphism data indicated that nucleotide diversity (π) is more than threefold higher in chimpanzees than in humans. Furthermore, it has recently been claimed, on the basis of limited data, that this is also true for nuclear DNA. In this study we sequenced 50 noncoding, nonrepetitive DNA segments randomly chosen from the nuclear genome in 9 bonobos and 17 chimpanzees. Surprisingly, the π value for bonobos is only 0.078%, even somewhat lower than that (0.088%) for humans for the same 50 segments. The π values are 0.092, 0.130, and 0.082% for East, Central, and West African chimpanzees, respectively, and 0.132% for all chimpanzees. These values are similar to or at most only 1.5 times higher than that for humans. The much larger difference in mtDNA diversity than in nuclear DNA diversity between humans and chimpanzees is puzzling. We speculate that it is due mainly to a reduction in effective population size (Ne) in the human lineage after the human-chimpanzee divergence, because a reduction in Ne has a stronger effect on mtDNA diversity than on nuclear DNA diversity.


2020 ◽  
Vol 85 (4) ◽  
pp. 895-901
Author(s):  
Takamitsu Amai ◽  
Tomoka Tsuji ◽  
Mitsuyoshi Ueda ◽  
Kouichi Kuroda

ABSTRACT Mitochondrial dysfunction can occur in a variety of ways, most often due to the deletion or mutation of mitochondrial DNA (mtDNA). The easy generation of yeasts with mtDNA deletion is attractive for analyzing the functions of the mtDNA gene. Treatment of yeasts with ethidium bromide is a well-known method for generating ρ° cells with complete deletion of mtDNA from Saccharomyces cerevisiae. However, the mutagenic effects of ethidium bromide on the nuclear genome cannot be excluded. In this study, we developed a “mito-CRISPR system” that specifically generates ρ° cells of yeasts. This system enabled the specific cleavage of mtDNA by introducing Cas9 fused with the mitochondrial target sequence at the N-terminus and guide RNA into mitochondria, resulting in the specific generation of ρ° cells in yeasts. The mito-CRISPR system provides a concise technology for deleting mtDNA in yeasts.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
John W Davey ◽  
Carolina M C Catta-Preta ◽  
Sally James ◽  
Sarah Forrester ◽  
Maria Cristina M Motta ◽  
...  

Abstract Angomonas deanei is an endosymbiont-bearing trypanosomatid with several highly fragmented genome assemblies and unknown chromosome number. We present an assembly of the A. deanei nuclear genome based on Oxford Nanopore sequence that resolves into 29 complete or close-to-complete chromosomes. The assembly has several previously unknown special features; it has a supernumerary chromosome, a chromosome with a 340-kb inversion, and there is a translocation between two chromosomes. We also present an updated annotation of the chromosomal genome with 10,365 protein-coding genes, 59 transfer RNAs, 26 ribosomal RNAs, and 62 noncoding RNAs.


Sign in / Sign up

Export Citation Format

Share Document