Duchenne muscular dystrophy: genome editing gives new hope for treatment

2018 ◽  
Vol 94 (1111) ◽  
pp. 296-304 ◽  
Author(s):  
Vassili Crispi ◽  
Antonios Matsakas

Duchenne muscular dystrophy (DMD) is a progressive wasting disease of skeletal and cardiac muscles, representing one of the most common recessive fatal inherited genetic diseases with 1:3500–1:5000 in yearly incidence. It is caused by mutations in the DMD gene that encodes the membrane-associated dystrophin protein. Over the years, many have been the approaches to management of DMD, but despite all efforts, no effective treatment has yet been discovered. Hope for the development of potential therapeutics has followed the recent advances in genome editing and gene therapy. This review gives an overview to DMD and summarises current lines of evidence with regard to treatment and disease management alongside the appropriate considerations.

Cells ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 253 ◽  
Author(s):  
Lubos Danisovic ◽  
Martina Culenova ◽  
Maria Csobonyeiova

Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder, caused by mutation of the DMD gene which encodes the protein dystrophin. This dystrophin defect leads to the progressive degeneration of skeletal and cardiac muscles. Currently, there is no effective therapy for this disorder. However, the technology of cell reprogramming, with subsequent controlled differentiation to skeletal muscle cells or cardiomyocytes, may provide a unique tool for the study, modeling, and treatment of Duchenne muscular dystrophy. In the present review, we describe current methods of induced pluripotent stem cell generation and discuss their implications for the study, modeling, and development of cell-based therapies for Duchenne muscular dystrophy.


2012 ◽  
Vol 24 (1) ◽  
pp. 231 ◽  
Author(s):  
N. Klymiuk ◽  
C. Thirion ◽  
K. Burkhardt ◽  
A. Wuensch ◽  
S. Krause ◽  
...  

Duchenne muscular dystrophy (DMD) is one of the most common genetic diseases in humans, affecting 1 in 3500 boys. It is characterised by progressive muscle weakness and wasting due to mutations in the dystrophin (DMD) gene resulting in absence of dystrophin protein in skeletal muscle. Although curative treatments are currently not available, genetic and pharmacological approaches are under investigation including early-phase clinical trials. Existing animal models in different species (e.g. mdx mouse, GRMD dog) have been instrumental to understand the pathophysiology of DMD, but have several limitations. Importantly, the causative point mutations (mdx mouse: nonsense mutation; GRMD dog: splice mutation) are different from the most common human mutations (out-of-frame deletion of one or several exons of the DMD gene). We used gene targeting in somatic cells and nuclear transfer to generate a genetically tailored pig model of DMD. A bacterial artificial chromosome (BAC) from the porcine DMD gene was modified by recombineering to replace exon 52, resulting in a frame shift in the transcript. Modified BAC were transfected into male neonatal kidney cells, which were screened by quantitative polymerase chain reaction for replacement of exon 52 in the X-linked DMD gene. Eight of 436 cell clones were successfully targeted and 2 of them were used for nuclear transfer. For each of the cell clones, a pregnancy was established by transfer of cloned embryos into recipient gilts. Four piglets of the first litter were live born and killed within 48 h and tissue samples were processed for histological characterisation. Two piglets of the second litter died during birth due to obstetric complications, whereas the other 2 piglets were delivered by Caesarean section and raised in an artificial feeding system. Their serum creatine kinase (CK) levels were grossly elevated. Although both piglets showed reduced mobility compared with age-matched controls, they were able to move and feed on their own. Immunofluorescence staining of dystrophin was negative in muscle fibres of DMD mutant piglets and the complete absence of dystrophin protein was confirmed by immunoblot analysis. Histological examination of biceps femoris muscle from DMD mutant pigs showed a degenerative myopathy with fibre size variation, rounded fibres, central nuclei, fibrosis and fatty replacement of muscle tissue mimicking the hallmarks of the human disease. In conclusion, we generated the first pig model for a genetic muscle disease. The DMD mutant pig appears to be a bona fide model of the human dystrophy as ascertained by absence of the dystrophin protein, elevated serum CK levels and early degenerative changes on muscle histology. Because deletion of exon 52 is one of the most frequent mutations found in human DMD, the exon 52 mutated DMD pig represents an excellent model for testing targeted genetic treatments. This study was supported by the Bayerische Forschungsstiftung.


2019 ◽  
Author(s):  
Sandeep Chakraborty

Duchenne muscular dystrophy (DMD), a monogenic disorder characterized by progressive muscle degeneration, is one of the first diseases being targeted for therapeutic genome editing using nuclease- based methods (CRISPR/ZFN/TALEN). However, safety and persistence remains a concern. Long-term (1 year) persistence and safety of a single intravenous administration of an adeno-associated virus (AAV) and CRISPR was reported in mdx mouse model recently [1]. They reported that ‘AAV-CRISPR is immunogenic when administered to adult mice’, which can be ‘avoided by treating neonatal mice’, and also warned about ‘unintended genome and transcript alterations’. Here, the integration of the Cas9 protein in the exact two locations in the DMD gene which has been edited has been shown based on the same sequencing data (Accid:PRJNA485509). Transcriptomic data also shows Cas9 being expressed. There is an important distinction between AAV and Cas9 integration - while AAV integration can be tolerated, Cas9 integration is a huge, and unacceptable, danger. While there are use cases where the nuclease can be sent as as protein, any gene-therapy application for DMD would require delivery using AAV and the nuclease in a plasmid. So, there is no possible alleviation for this in the future, unless we are willing to accept transgenic humans as a trade-off for curing DMD.


2021 ◽  
Vol 10 (4) ◽  
pp. 820
Author(s):  
Fernanda Fortunato ◽  
Rachele Rossi ◽  
Maria Sofia Falzarano ◽  
Alessandra Ferlini

Duchenne muscular dystrophy (DMD) is the most common childhood muscular dystrophy affecting ~1:5000 live male births. Following the identification of pathogenic variations in the dystrophin gene in 1986, the underlining genotype/phenotype correlations emerged and the role of the dystrophin protein was elucidated in skeletal, smooth, and cardiac muscles, as well as in the brain. When the dystrophin protein is absent or quantitatively or qualitatively modified, the muscle cannot sustain the stress of repeated contractions. Dystrophin acts as a bridging and anchoring protein between the sarcomere and the sarcolemma, and its absence or reduction leads to severe muscle damage that eventually cannot be repaired, with its ultimate substitution by connective tissue and fat. The advances of an understanding of the molecular pathways affected in DMD have led to the development of many therapeutic strategies that tackle different aspects of disease etiopathogenesis, which have recently led to the first successful approved orphan drugs for this condition. The therapeutic advances in this field have progressed exponentially, with second-generation drugs now entering in clinical trials as gene therapy, potentially providing a further effective approach to the condition.


Author(s):  
Ayhan Atmanli ◽  
Andreas C Chai ◽  
Miao Cui ◽  
Zhaoning Wang ◽  
Takahiko Nishiyama ◽  
...  

Rationale: Absence of dystrophin in Duchenne muscular dystrophy (DMD) results in the degeneration of skeletal and cardiac muscles. Owing to advances in respiratory management of DMD patients, cardiomyopathy has become a significant aspect of the disease. While CRISPR/Cas9 genome editing technology holds great potential as a novel therapeutic avenue for DMD, little is known about the potential of DMD correction using CRISPR/Cas9 technology to mitigate cardiac abnormalities in DMD. Objective: To define the effects of CRISPR/Cas9 genome editing on structural, functional and transcriptional abnormalities in DMD-associated cardiac disease. Methods and Results: We generated induced pluripotent stem cells (iPSCs) from a patient with a deletion of exon 44 of the DMD gene (ΔEx44) and his healthy brother. We targeted exon 45 of the DMD gene by CRISPR/Cas9 genome editing to generate corrected DMD (cDMD) iPSC lines, wherein the DMD open reading frame was restored via reframing (RF) or exon skipping (ES). While DMD cardiomyocytes (CMs) demonstrated morphologic, structural and functional deficits compared to control CMs, CMs from both cDMD lines were similar to control CMs. Bulk RNA-sequencing of DMD CMs showed transcriptional dysregulation consistent with dilated cardiomyopathy, which was mitigated in cDMD CMs. We then corrected dysfunctional DMD CMs by adenoviral delivery of Cas9/gRNA and showed that correction of DMD CMs post-differentiation reduces their arrhythmogenic potential. Single-nucleus RNA-sequencing of hearts of DMD mice showed transcriptional dysregulation in CMs and fibroblasts, which in corrected mice was reduced to similar levels as wildtype mice. Conclusions: We show that CRISPR/Cas9-mediated correction of DMD ΔEx44 mitigates structural, functional and transcriptional abnormalities consistent with dilated cardiomyopathy irrespective of how the protein reading frame is restored. We show that these effects extend to postnatal editing in iPSC-CMs and mice. These findings provide key insights into the utility of genome editing as a novel therapeutic for DMD-associated cardiomyopathy.


Author(s):  
Yoshitsugu Aoki ◽  
◽  
Tetsuya Nagata ◽  
Shin’ichi Takeda

Duchenne Muscular Dystrophy (DMD) is a lethalmuscle disorder characterized by mutations in the DMD gene. These mutations primarily disrupt the reading frame, resulting in the absence of functional dystrophin protein. Exon skipping, which involves the use of antisense oligonucleotides is a promising therapeutic approach for DMD, and clinical trials on exon skipping are currently underway in DMD patients. Recently, stable and less-toxic antisense oligonucleotides with higher efficacy have been developed in mouse and dog models of DMD. This review highlights a new approach for antisense oligonucleotide-based therapeutics for DMD, particularly for exon skipping-based methods.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 1970 ◽  
Author(s):  
Irina Conboy ◽  
Niren Murthy ◽  
Jessy Etienne ◽  
Zachery Robinson

This review discusses current bottlenecks in making CRISPR-Cas9-mediated genome editing a therapeutic reality and it outlines recent strategies that aim to overcome these hurdles as well as the scope of current clinical trials that pioneer the medical translation of CRISPR-Cas9. Additionally, this review outlines the specifics of disease-modifying gene editing in recessive versus dominant genetic diseases with the focus on genetic myopathies that are exemplified by Duchenne muscular dystrophy and myotonic dystrophies.


Author(s):  
Nahla O. Mousa ◽  
Ahmed Osman ◽  
Nagia Fahmy ◽  
Ahmed Abdellatif ◽  
Waheed K. Zahra

Duchenne muscular dystrophy (DMD) is one of the fatal X-linked disorders that are characterized by progressive muscle weakness and occur due to mutation in the largest human gene known as the DMD gene which encodes dystrophin protein that is mandatory for keeping the muscles structurally and functionally intact. The disease always affects boys (1 from every ~5000), and in some cases the female carriers are symptomatic. The disease usually leads to impairment in cardiac and pulmonary functions leading to the death of the patients in very young ages. Understanding DMD through precise molecular diagnosis will aid in determining the suitable therapeutic approach for the cases like designing exon-skipping antisense oligonucleotides (AOs) or stem cell-based therapies in conjunction with gene editing techniques (CRISPR/Cas9). Such therapies can correct the genetic defect in the DMD gene and ameliorate the symptoms. In this chapter, we will illustrate the past and current strategies for DMD disease treatment.


2021 ◽  
pp. 1-5
Author(s):  
Gian Luca Vita ◽  
Luisa Politano ◽  
Angela Berardinelli ◽  
Giuseppe Vita

Background: Increasing evidence suggests that Duchenne muscular dystrophy (DMD) gene is involved in the occurrence of different types of cancer. Moreover, development of sarcomas was reported in mdx mice, the murine model of DMD, in older age. So far, nine isolated DMD patients were reported with concomitant cancer, four of whom with rhabdomyosarcoma (RMS), but no systematic investigation was performed about the true incidence of cancer in DMD. Methods: All members of the Italian Association of Myology were asked about the occurrence of cancer in their DMD patients in the last 30 years. Results: Four DMD patients with cancer were reported after checking 2455 medical records. One developed brain tumour at the age of 35 years. Two patients had alveolar RMS at 14 and 17 years of age. The fourth patient had a benign enchondroma when 11-year-old. Conclusion: Prevalence of cancer in general in the Italian DMD patients does not seem to be different from that in the general population with the same age range. Although the small numbers herein presented do not allow definitive conclusion, the frequent occurrence of RMS in DMD patients raises an alert for basic researchers and clinicians. The role of DMD gene in cancer merits further investigations.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Dominic Scaglioni ◽  
Francesco Catapano ◽  
Matthew Ellis ◽  
Silvia Torelli ◽  
Darren Chambers ◽  
...  

AbstractDuring the last decade, multiple clinical trials for Duchenne muscular dystrophy (DMD) have focused on the induction of dystrophin expression using different strategies. Many of these trials have reported a clear increase in dystrophin protein following treatment. However, the low levels of the induced dystrophin protein have raised questions on its functionality. In our present study, using an unbiased, high-throughput digital image analysis platform, we assessed markers of regeneration and levels of dystrophin associated protein via immunofluorescent analysis of whole muscle sections in 25 DMD boys who received 48-weeks treatment with exon 53 skipping morpholino antisense oligonucleotide (PMO) golodirsen. We demonstrate that the de novo dystrophin induced by exon skipping with PMO golodirsen is capable of conferring a histological benefit in treated patients with an increase in dystrophin associated proteins at the dystrophin positive regions of the sarcolemma in post-treatment biopsies. Although 48 weeks treatment with golodirsen did not result in a significant change in the levels of fetal/developmental myosins for the entire cohort, there was a significant negative correlation between the amount of dystrophin and levels of regeneration observed in different biopsy samples. Our results provide, for the first time, evidence of functionality of induced dystrophin following successful therapeutic intervention in the human.


Sign in / Sign up

Export Citation Format

Share Document