A Practical Method to Estimate Information Content in the Context of 4D-Var Data Assimilation

2013 ◽  
Vol 1 (1) ◽  
pp. 106-138 ◽  
Author(s):  
K. Singh ◽  
A. Sandu ◽  
M. Jardak ◽  
K. W. Bowman ◽  
M. Lee
2016 ◽  
Vol 144 (8) ◽  
pp. 2927-2945
Author(s):  
Nedjeljka Žagar ◽  
Jeffrey Anderson ◽  
Nancy Collins ◽  
Timothy Hoar ◽  
Kevin Raeder ◽  
...  

Abstract Global data assimilation systems for numerical weather prediction (NWP) are characterized by significant uncertainties in tropical analysis fields. Furthermore, the largest spread of global ensemble forecasts in the short range on all scales is in the tropics. The presented results suggest that these properties hold even in the perfect-model framework and the ensemble Kalman filter data assimilation with a globally homogeneous network of wind and temperature profiles. The reasons for this are discussed by using the modal analysis, which provides information about the scale dependency of analysis and forecast uncertainties and information about the efficiency of data assimilation to reduce the prior uncertainties in the balanced and inertio-gravity dynamics. The scale-dependent representation of variance reduction of the prior ensemble by the data assimilation shows that the peak efficiency of data assimilation is on the synoptic scales in the midlatitudes that are associated with quasigeostrophic dynamics. In contrast, the variance associated with the inertia–gravity modes is less successfully reduced on all scales. A smaller information content of observations on planetary scales with respect to the synoptic scales is discussed in relation to the large-scale tropical uncertainties that current data assimilation methodologies do not address successfully. In addition, it is shown that a smaller reduction of the large-scale uncertainties in the prior state for NWP in the tropics than in the midlatitudes is influenced by the applied radius for the covariance localization.


2016 ◽  
Author(s):  
Michael Kahnert ◽  
Emma Andersson

Abstract. We theoretically and numerically investigate the problem of assimilating lidar observations of extinction and backscattering coefficients of aerosols into a chemical transport model. More specifically, we consider the inverse problem of determining the chemical composition of aerosols from these observations. The main questions are how much information the observations contain to constrain the particles' chemical composition, and how one can optimise a chemical data assimilation system to make maximum use of the available information. We first quantify the information content of the measurements by computing the singular values of the observation operator. From the singular values we can compute the number of signal degrees of freedom and the reduction in Shannon entropy. For an observation standard deviation of 10 %, it is found that simultaneous measurements of extinction and backscattering allows us to constrain twice as many model variables as extinction measurements alone. The same holds for measurements at two wavelengths compared to measurements at a single wavelength. However, when we extend the set of measurements from two to three wavelengths then we observe only a small increase in the number of signal degrees of freedom, and a minor change in the Shannon entropy. The information content is strongly sensitive to the observation error; both the number of signal degrees of freedom and the reduction in Shannon entropy steeply decrease as the observation standard deviation increases in the range between 1 and 100 %. The right singular vectors of the observation operator can be employed to transform the model variables into a new basis in which the components of the state vector can be divided into signal-related and noise-related components. We incorporate these results in a chemical data assimilation algorithm by introducing weak constraints that restrict the assimilation algorithm to acting on the signal-related model variables only. This ensures that the information contained in the measurements is fully exploited, but not over-used. Numerical experiments confirm that the constrained data assimilation algorithm solves the inverse problem in a way that automatises the choice of control variables, and that restricts the minimisation of the costfunction to the signal-related model variables.


2006 ◽  
Vol 134 (12) ◽  
pp. 3657-3667 ◽  
Author(s):  
T. Koyama ◽  
T. Vukicevic ◽  
M. Sengupta ◽  
T. Vonder Haar ◽  
A. S. Jones

Abstract Information content analysis of the Geostationary Operational Environmental Satellite (GOES) sounder observations in the infrared was conducted for use in satellite data assimilation. Information content is defined as a first-order response of the top-of-atmosphere brightness temperature to perturbations of simulated temperature and humidity profiles, obtained from a cloud-resolving model, both in the presence and absence of clouds. Sensitivity to the perturbations was numerically evaluated using an observational operator for visible and infrared radiative transfer developed within a research satellite data assimilation system. The vertical distribution of the sensitivities was analyzed as a function of cloud optical thickness covering the range from a cloud-free scene to an optically thick cloud. The clear-sky sensitivities to temperature and humidity perturbations for each channel are representative of the corresponding channel weighting functions for a clear-sky case. For optically thin–moderate ice clouds, the vertical distributions of the sensitivities resemble clear-sky results, indicating that the use of infrared sounding observations in data assimilation can potentially improve temperature and humidity profiles below those clouds. This result is significant, as GOES infrared sounder data have until now only been used in cloud-cleared scenes. It is expected that the use of sounder data in data assimilation, even in the presence of optically thin to moderate high clouds, will help reduce errors in temperature and water vapor mixing ratio profiles below the clouds.


2011 ◽  
Vol 139 (3) ◽  
pp. 726-737 ◽  
Author(s):  
Cristina Lupu ◽  
Pierre Gauthier ◽  
Stéphane Laroche

Abstract The degrees of freedom for signal (DFS) is used in data assimilation applications to measure the self-sensitivity of analysis to different observation types. This paper describes a practical method to estimate the DFS of observations from a posteriori statistics. The method does not require the consistency of the error statistics in the analysis system and it is shown that the observational impact on analyses can be estimated from observation departures with respect to analysis or the forecast. This method is first introduced to investigate the impact of a complete set, or subsets, of observations on the analysis for idealized one-dimensional variational data assimilation (1D-Var) analysis experiments and then applied in the framework of the three dimensional (3D)- and four-dimensional (4D)-Var schemes developed at Environment Canada.


2006 ◽  
Vol 63 (3) ◽  
pp. 901-919 ◽  
Author(s):  
T. Vukicevic ◽  
M. Sengupta ◽  
A. S. Jones ◽  
T. Vonder Haar

Abstract This study addresses the problem of four-dimensional (4D) estimation of a cloudy atmosphere on cloud-resolving scales using satellite remote sensing measurements. The motivation is to develop a methodology for accurate estimation of cloud properties and the associated atmospheric environment on small spatial scales but over large regions to aid in better understanding of the clouds and their role in the atmospheric system. The problem is initially approached by the study of the assimilation of the Geostationary Operational Environmental Satellite (GOES) imager observations into a cloud-resolving model with explicit bulk cloud microphysical parameterization. A new 4D variational data assimilation (4DVAR) research system with the cloud-resolving capability is applied to a case of a multilayered cloud evolution without convection. In the experiments the information content of the IR window channels is addressed as well as the sensitivity of estimation to lateral boundary condition errors, model first guess, decorrelation length in the background statistical error model, and the use of a generic linear model error. The assimilation results are compared with independent observations from the Atmospheric Radiation Measurement (ARM) central facility archive. The modeled 3D spatial distribution and short-term evolution of the ice cloud mass is significantly improved by the assimilation of IR window channels when the model already contains conditions for the ice cloud formation. The assimilated ice cloud in this case is in good agreement with the independent cloud radar measurements. The simulation of liquid clouds below thick ice clouds is not influenced by the IR window observations. The assimilation results clearly demonstrate that increasing the observational constraint from individual to combined channel measurements and from less to more frequent observation times systematically improves the assimilation results. The experiments with the model error indicate that the current specification of this error in the form of a generic linear forcing, which was adopted from other data assimilation studies, is not suitable for the cloud-resolving data assimilation. Instead, a parameter estimation approach may need to be explored in the future. The experiments with varying decorrelation lengths suggest the need to use the model horizontal grid spacing that is several times smaller than the GOES imager native resolution to achieve equivalent spatial variability in the assimilation.


Sign in / Sign up

Export Citation Format

Share Document