A Geometric Interpretation of the Heat Equation with Multivalued Initial Data

1996 ◽  
Vol 27 (4) ◽  
pp. 932-958 ◽  
Author(s):  
Lawrence C. Evans
2018 ◽  
Vol 144 (3) ◽  
pp. 287-297
Author(s):  
Amy Poh Ai Ling ◽  
Masahiko Shimojō

2018 ◽  
Vol 52 (5) ◽  
pp. 2065-2082 ◽  
Author(s):  
Erik Burman ◽  
Jonathan Ish-Horowicz ◽  
Lauri Oksanen

We consider a finite element discretization for the reconstruction of the final state of the heat equation, when the initial data is unknown, but additional data is given in a sub domain in the space time. For the discretization in space we consider standard continuous affine finite element approximation, and the time derivative is discretized using a backward differentiation. We regularize the discrete system by adding a penalty on the H2-semi-norm of the initial data, scaled with the mesh-parameter. The analysis of the method uses techniques developed in E. Burman and L. Oksanen [Numer. Math. 139 (2018) 505–528], combining discrete stability of the numerical method with sharp Carleman estimates for the physical problem, to derive optimal error estimates for the approximate solution. For the natural space time energy norm, away from t = 0, the convergence is the same as for the classical problem with known initial data, but contrary to the classical case, we do not obtain faster convergence for the L2-norm at the final time.


Author(s):  
Minkyu Kwak

We first prove existence and uniqueness of non-negative solutions of the equationin in the range 1 < p < 1 + 2/N, when initial data u(x, 0) = a|x|−2(p−1), x ≠ 0, for a > 0. It is proved that the maximal and minimal solutions are self-similar with the formwhere g = ga satisfiesAfter uniqueness is proved, the asymptotic behaviour of solutions ofis studied. In particular, we show thatThe case for a = 0 is also considered and a sharp decay rate of the above equation is derived. In the final, we reveal existence of solutions of the first and third equations above, which change sign.


2020 ◽  
Vol 34 ◽  
pp. 03011
Author(s):  
Constantin Niţă ◽  
Laurenţiu Emanuel Temereancă

In this article we prove that the heat equation with a memory term on the one-dimensional torus has a unique solution and we study the smoothness properties of this solution. These properties are related with some smoothness assumptions imposed to the initial data of the problem and to the source term.


Author(s):  
Weiyong He ◽  
Yu Zeng

Abstract In this paper, we prove that there exists a dimensional constant $\delta&gt; 0$ such that given any background Kähler metric $\omega $, the Calabi flow with initial data $u_0$ satisfying \begin{equation*} \partial \bar \partial u_0 \in L^\infty (M)\ \textrm{and}\ (1- \delta )\omega &lt; \omega_{u_0} &lt; (1+\delta )\omega, \end{equation*}admits a unique short-time solution, and it becomes smooth immediately, where $\omega _{u_0}: = \omega +\sqrt{-1}\partial \bar \partial u_0$. The existence time depends on initial data $u_0$ and the metric $\omega $. As a corollary, we get that the Calabi flow has short-time existence for any initial data satisfying \begin{equation*} \partial \bar \partial u_0 \in C^0(M)\ \textrm{and}\ \omega_{u_0}&gt; 0, \end{equation*}which should be interpreted as a “continuous Kähler metric”. A main technical ingredient is a new Schauder-type estimates for biharmonic heat equation on Riemannian manifolds with time-weighted Hölder norms.


Sign in / Sign up

Export Citation Format

Share Document