Enumerating Typical Circulant Covering Projections Onto a Circulant Graph

2005 ◽  
Vol 19 (1) ◽  
pp. 196-207 ◽  
Author(s):  
Rongquan Feng ◽  
Jin Ho Kwak ◽  
Young Soo Kwon
Keyword(s):  
2011 ◽  
Vol 5 (1) ◽  
pp. 22-36 ◽  
Author(s):  
J.W. Sander ◽  
T. Sander

The energy of a graph is the sum of the moduli of the eigenvalues of its adjacency matrix. We study the energy of integral circulant graphs, also called gcd graphs. Such a graph can be characterized by its vertex count n and a set D of divisors of n such that its vertex set is Zn and its edge set is {{a,b} : a, b ? Zn; gcd(a-b, n)? D}. For an integral circulant graph on ps vertices, where p is a prime, we derive a closed formula for its energy in terms of n and D. Moreover, we study minimal and maximal energies for fixed ps and varying divisor sets D.


2005 ◽  
Vol 21 (4) ◽  
pp. 385-400
Author(s):  
Rongquan Feng ◽  
Jin Ho Kwak

2002 ◽  
Vol 03 (03n04) ◽  
pp. 273-289 ◽  
Author(s):  
CHANG-HSIUNG TSAI ◽  
JIMMY J. M. TAN ◽  
YEN-CHU CHUANG ◽  
LIH-HSING HSU

We present some results concerning hamiltonian properties of recursive circulant graphs in the presence of faulty vertices and/or edges. The recursive circulant graph G(N, d) with d ≥ 2 has vertex set V(G) = {0, 1, …, N - 1} and the edge set E(G) = {(v, w)| ∃ i, 0 ≤ i ≤ ⌈ log d N⌉ - 1, such that v = w + di (mod N)}. When N = cdk where d ≥ 2 and 2 ≤ c ≤ d, G(cdk, d) is regular, node symmetric and can be recursively constructed. G(cdk, d) is a bipartite graph if and only if c is even and d is odd. Let F, the faulty set, be a subset of V(G(cdk, d)) ∪ E(G(cdk, d)). In this paper, we prove that G(cdk, d) - F remains hamiltonian if |F| ≤ deg (G(cdk, d)) - 2 and G(cdk, d) is not bipartite. Moreover, if |F| ≤ deg (G(cdk, d)) - 3 and G(cdk, d) is not a bipartite graph, we prove a more stronger result that for any two vertices u and v in V(G(cdk, d)) - F, there exists a hamiltonian path of G(cdk, d) - F joining u and v.


10.37236/6388 ◽  
2017 ◽  
Vol 24 (2) ◽  
Author(s):  
Hiranmoy Pal ◽  
Bikash Bhattacharjya

Let $G$ be a graph with adjacency matrix $A$. The transition matrix of $G$ relative to $A$ is defined by $H(t):=\exp{\left(-itA\right)}$, where $t\in {\mathbb R}$. The graph $G$ is said to admit pretty good state transfer between a pair of vertices $u$ and $v$ if there exists a sequence of real numbers $\{t_k\}$ and a complex number $\gamma$ of unit modulus such that $\lim\limits_{k\rightarrow\infty} H(t_k) e_u=\gamma e_v.$ We find that the cycle $C_n$ as well as its complement $\overline{C}_n$ admit pretty good state transfer if and only if $n$ is a power of two, and it occurs between every pair of antipodal vertices. In addition, we look for pretty good state transfer in more general circulant graphs. We prove that union (edge disjoint) of an integral circulant graph with a cycle, each on $2^k$ $(k\geq 3)$ vertices, admits pretty good state transfer. The complement of such union also admits pretty good state transfer. Using Cartesian products, we find some non-circulant graphs admitting pretty good state transfer.


2019 ◽  
Vol 14 (2) ◽  
pp. 103-126
Author(s):  
József Borbély ◽  
András Sárközy

AbstractIn the last decades many results have been proved on pseudo-randomness of binary sequences. In this series our goal is to show that using many of these results one can also construct large families of quasi-random, pseudo-random and strongly pseudo-random graphs. Indeed, it will be proved that if the first row of the adjacency matrix of a circulant graph forms a binary sequence which possesses certain pseudorandom properties (and there are many large families of binary sequences known with these properties), then the graph is quasi-random, pseudo-random or strongly pseudo-random, respectively. In particular, here in Part I we will construct large families of quasi-random graphs along these lines. (In Parts II and III we will present and study constructions for pseudo-random and strongly pseudo-random graphs, respectively.)


2020 ◽  
Vol 12 (04) ◽  
pp. 2050055
Author(s):  
Yen-Jen Cheng ◽  
Hung-Lin Fu ◽  
Chia-An Liu

Let [Formula: see text] be a simple undirected graph. [Formula: see text] is a circulant graph defined on [Formula: see text] with difference set [Formula: see text] provided two vertices [Formula: see text] and [Formula: see text] in [Formula: see text] are adjacent if and only if [Formula: see text]. For convenience, we use [Formula: see text] to denote such a circulant graph. A function [Formula: see text] is an integer [Formula: see text]-domination function if for each [Formula: see text], [Formula: see text] By considering all [Formula: see text]-domination functions [Formula: see text], the minimum value of [Formula: see text] is the [Formula: see text]-domination number of [Formula: see text], denoted by [Formula: see text]. In this paper, we prove that if [Formula: see text], [Formula: see text], then the integer [Formula: see text]-domination number of [Formula: see text] is [Formula: see text].


2020 ◽  
Vol 27 (01) ◽  
pp. 87-94
Author(s):  
A.D. Mednykh ◽  
I.A. Mednykh

Let [Formula: see text] be the generating function for the number [Formula: see text] of spanning trees in the circulant graph Cn(s1, s2, …, sk). We show that F(x) is a rational function with integer coefficients satisfying the property F(x) = F(1/x). A similar result is also true for the circulant graphs C2n(s1, s2, …, sk, n) of odd valency. We illustrate the obtained results by a series of examples.


2019 ◽  
Vol 11 (01) ◽  
pp. 1950005 ◽  
Author(s):  
Laxman Saha ◽  
Pratima Panigrahi

Due to the rapid growth in the use of wireless communication services and the corresponding scarcity and the high cost of radio spectrum bandwidth, Channel assignment problem (CAP) is becoming highly important. Radio [Formula: see text]-coloring of graphs is a variation of CAP. For a positive integer [Formula: see text], a radio [Formula: see text]-coloring of a simple connected graph [Formula: see text] is a mapping [Formula: see text] from the vertex set [Formula: see text] to the set [Formula: see text] of non-negative integers such that [Formula: see text] for each pair of distinct vertices [Formula: see text] and [Formula: see text] of [Formula: see text], where [Formula: see text] is the distance between [Formula: see text] and [Formula: see text] in [Formula: see text]. The span of a radio [Formula: see text]-coloring [Formula: see text], denoted by [Formula: see text], is defined as [Formula: see text] and the radio[Formula: see text]-chromatic number of [Formula: see text], denoted by [Formula: see text], is [Formula: see text] where the minimum is taken over all radio [Formula: see text]-coloring of [Formula: see text]. In this paper, we present two radio [Formula: see text]-coloring algorithms for general graphs which will produce radio [Formula: see text]-colorings with their spans. For an [Formula: see text]-vertex simple connected graph the time complexity of the both algorithm is of [Formula: see text]. Implementing these algorithms we get the exact value of [Formula: see text] for several graphs (for example, [Formula: see text], [Formula: see text], [Formula: see text], some circulant graph etc.) and many values of [Formula: see text], especially for [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document