Cancer stem cells and bone, and cancer cell dormancy and bone metastasis: Meeting report from skeletal complications of malignancy V

IBMS BoneKEy ◽  
2008 ◽  
Vol 5 (8) ◽  
pp. 285-288
Author(s):  
Gordon J Strewler
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Narumol Bhummaphan ◽  
Piyapat Pin-on ◽  
Preeyaporn Plaimee Phiboonchaiyanan ◽  
Jirattha Siriluksana ◽  
Chatchawit Aporntewan ◽  
...  

Abstract Background Intratumour heterogeneous gene expression among cancer and cancer stem cells (CSCs) can cause failure of current targeted therapies because each drug aims to target the function of a single gene. Long mononucleotide A-T repeats are cis-regulatory transcriptional elements that control many genes, increasing the expression of numerous genes in various cancers, including lung cancer. Therefore, targeting A-T repeats may dysregulate many genes driving cancer development. Here, we tested a peptide nucleic acid (PNA) oligo containing a long A-repeat sequence [A(15)] to disrupt the transcriptional control of the A-T repeat in lung cancer and CSCs. Methods First, we separated CSCs from parental lung cancer cell lines. Then, we evaluated the role of A-T repeat gene regulation by counting the number of repeats in differentially regulated genes between CSCs and the parental cells of the CSCs. After testing the dosage and effect of PNA-A15 on normal and cancer cell toxicity and CSC phenotypes, we analysed genome-wide expression to identify dysregulated genes in CSCs. Results The number of A-T repeats in genes differentially regulated between CSCs and parental cells differed. PNA-A15 was toxic to lung cancer cells and CSCs but not to noncancer cells. Finally, PNA-A15 dysregulated a number of genes in lung CSCs. Conclusion PNA-A15 is a promising novel targeted therapy agent that targets the transcriptional control activity of multiple genes in lung CSCs.


2014 ◽  
Vol 3 (5) ◽  
pp. 1099-1111 ◽  
Author(s):  
Blanca D. Lopez‐Ayllon ◽  
Veronica Moncho‐Amor ◽  
Ander Abarrategi ◽  
Inmaculada Ibañez Cáceres ◽  
Javier Castro‐Carpeño ◽  
...  

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Jeong Yoon Han ◽  
Yu Kyeong Han ◽  
Ga-Young Park ◽  
Sung Dae Kim ◽  
Chang Geun Lee

2017 ◽  
Vol 37 (1) ◽  
Author(s):  
Kenly Wuputra ◽  
Chang-Shen Lin ◽  
Ming-Ho Tsai ◽  
Chia-Chen Ku ◽  
Wen-Hsin Lin ◽  
...  

2009 ◽  
Vol 27 (15_suppl) ◽  
pp. 4124-4124
Author(s):  
T. Yeung ◽  
J. Wilding ◽  
W. Bodmer

4124 Background: Cancer stem cells are defined as cells within a tumour that are able to self-renew and differentiate into all cell lineages within that tumour. With our extensive panel of colorectal cell lines, our aims are: 1) To characterise and isolate cancer stem cells based on stem cell markers, morphological appearances and the ability to form multiple lineages; 2) To understand how cancer stem cells drive tumour growth and progression. Methods: 1) Fluorescent Activated Cell Sorting (FACS); 2) In vitro soft agar clonogenic and Matrigel differentiation assays; 3) In vivo tumourigenic NOD/SCID mice assay; 4) Confocal immunofluorescence imaging. Results: 1) A subpopulation of cells can differentiate into crypt-like megacolonies, retaining the ability to self-renew and differentiate. SW1222 cell line forms heterogeneous colonies when single cells are plated in Matrigel. Megacolonies can both self-renew and form terminally differentiated small colonies, whereas small colonies cannot form megacolonies. Megacolonies develop crypt-like structures and increase their expression of differentiation markers (CDX-1, CK-20) over time. Experiments are currently under way to confirm that cells from megacolonies are able to initiate tumours in NOD/SCID mice. Some cell lines retain the ability to differentiate into both neuroendocrine and epithelial lineages. 2) CD44+CD24+ enriches for the cancer stem cell population. Colorectal cancer cell lines HCT116, HT29, LS180, LS174T and SW1222 express both CD44 and CD24. The CD44+CD24+ subpopulation is the most clonogenic. In SW1222, CD44+CD24+ cells enrich for megacolonies and can reform all four CD44/CD24 subpopulations. 3) Hypoxia reduces differentiation, increases stem-like phenotype and enhances clonogenicity. Hypoxia increases the proportion of undifferentiated colorectal cancer cells when plated on Matrigel and increases clonogenicity. Conclusions: 1) Colorectal cancer cell lines contain subpopulations of cells that have the ability to self-renew, differentiate and drive tumour growth, and may be characterised by their cell surface markers and colony morphology. 2) CD44+CD24+ can be used as markers for colorectal cancer stem cells. 3) Hypoxia increases the stem-like phenotype of cancer cells, reduces differentiation and increases clonogenicity. No significant financial relationships to disclose.


Sign in / Sign up

Export Citation Format

Share Document