The effects of ultraviolet-B radiation on freshwater ecosystems of the Arctic: Influence from stratospheric ozone depletion and climate change

2004 ◽  
Vol 12 (1) ◽  
pp. 1-70 ◽  
Author(s):  
S Perin ◽  
D RS Lean

Depletion of stratospheric ozone, the principal atmospheric attenuator of ultraviolet-B (UVB) radiation, by man-made chemicals has raised scientific and public concern regarding the biological effects of increased UVB radiation on Earth. There is an increased awareness that existing levels of solar UV radiation have an important influence on biological and chemical processes in aquatic ecosystems. For aquatic organisms, numerous studies have shown direct detrimental effects of UVB radiation at each trophic level. Fortunately, many aquatic organisms also possess a range of photoprotective mechanisms against UV radiation toxicity. In addition to its direct impact, harmful effects of UVB radiation at a single-trophic level can cascade through the food web and indirectly affect organisms from other trophic levels. Because UV radiation photochemically reacts with humic substances and other photosensitive agents in the water, increases in solar UVB can also indirectly affect aquatic organisms through the production and (or) release of different photoproducts like biologically available nutrients and harmful reactive oxygen species. Polar aquatic ecosystems have been of particular concern, since stratospheric ozone-related UVB increases have been the greatest in these regions. With the influences of climate warming and the possibility of future volcanic eruptions, ozone losses are expected to get worse in the Arctic stratosphere, and the ozone layer recovery may not follow the slow decline of industrial ozone-depleting compounds in the atmosphere. Climate warming is also expected to bring important changes in underwater ultraviolet radiation (UVR) penetration in Arctic freshwaters that would be more significant to the aquatic biota than stratospheric ozone depletion.Key words: Arctic, UV radiation, UVB, ozone depletion, climate change, aquatic ecosystems.

2020 ◽  
Vol 19 (5) ◽  
pp. 542-584 ◽  
Author(s):  
G. H. Bernhard ◽  
R. E. Neale ◽  
P. W. Barnes ◽  
P. J. Neale ◽  
R. G. Zepp ◽  
...  

This assessment provides an update of the interactive effects of solar ultraviolet (UV) radiation, stratospheric ozone, and climate change on human health, terrestrial and aquatic ecosystems, biochemical cycles, air quality, and material damage.


2019 ◽  
Vol 18 (3) ◽  
pp. 717-746 ◽  
Author(s):  
Craig E. Williamson ◽  
Patrick J. Neale ◽  
Samuel Hylander ◽  
Kevin C. Rose ◽  
Félix L. Figueroa ◽  
...  

Summary of current knowledge about effects of UV radiation in inland and oceanic waters related to stratospheric ozone depletion and climate change.


2015 ◽  
Vol 14 (1) ◽  
pp. 127-148 ◽  
Author(s):  
David J. Erickson III ◽  
Barbara Sulzberger ◽  
Richard G. Zepp ◽  
Amy T. Austin

Solar UV radiation and climate change interact to influence and determine the environmental conditions for humans on planet Earth.


2015 ◽  
Vol 14 (1) ◽  
pp. 19-52 ◽  
Author(s):  
A. F. Bais ◽  
R. L. McKenzie ◽  
G. Bernhard ◽  
P. J. Aucamp ◽  
M. Ilyas ◽  
...  

Percentage changes in the UV Index (UVI) for 2090 relative to 2015 due to changes in ozone (left) and aerosols (right) only. Large decreases are projected over Antarctica due to stratospheric ozone recovery. Increases are projected for parts of Asia due to decreases in aerosols, partly reversing the possible large reductions in UVI after the 1950s.


2012 ◽  
Vol 12 (11) ◽  
pp. 30661-30754 ◽  
Author(s):  
M. von Hobe ◽  
S. Bekki ◽  
S. Borrmann ◽  
F. Cairo ◽  
F. D'Amato ◽  
...  

Abstract. Significant reductions in stratospheric ozone occur inside the polar vortices each spring when chlorine radicals produced by heterogeneous reactions on cold particle surfaces in winter destroy ozone mainly in two catalytic cycles, the ClO dimer cycle and the ClO/BrO cycle. Chlorofluorocarbons (CFCs), which are responsible for most of the chlorine currently present in the stratosphere, have been banned by the Montreal Protocol and its amendments, and the ozone layer is predicted to recover to 1980 levels within the next few decades. During the same period, however, climate change is expected to alter the temperature, circulation patterns and chemical composition in the stratosphere, and possible geo-engineering ventures to mitigate climate change may lead to additional changes. To realistically predict the response of the ozone layer to such influences requires the correct representation of all relevant processes. The European project RECONCILE has comprehensively addressed remaining questions in the context of polar ozone depletion, with the objective to quantify the rates of some of the most relevant, yet still uncertain physical and chemical processes. To this end RECONCILE used a broad approach of laboratory experiments, two field missions in the Arctic winter 2009/10 employing the high altitude research aircraft M55-Geophysica and an extensive match ozone sonde campaign, as well as microphysical and chemical transport modelling and data assimilation. Some of the main outcomes of RECONCILE are as follows: (1) vortex meteorology: the 2009/10 Arctic winter was unusually cold at stratospheric levels during the six-week period from mid-December 2009 until the end of January 2010, with reduced transport and mixing across the polar vortex edge; polar vortex stability and how it is influenced by dynamic processes in the troposphere has led to unprecedented, synoptic-scale stratospheric regions with temperatures below the frost point; in these regions stratospheric ice clouds have been observed, extending over >106km2 during more than 3 weeks. (2) Particle microphysics: heterogeneous nucleation of nitric acid trihydrate (NAT) particles in the absence of ice has been unambiguously demonstrated; conversely, the synoptic scale ice clouds also appear to nucleate heterogeneously; a variety of possible heterogeneous nuclei has been characterised by chemical analysis of the non-volatile fraction of the background aerosol; substantial formation of solid particles and denitrification via their sedimentation has been observed and model parameterizations have been improved. (3) Chemistry: strong evidence has been found for significant chlorine activation not only on polar stratospheric clouds (PSCs) but also on cold binary aerosol; laboratory experiments and field data on the ClOOCl photolysis rate and other kinetic parameters have been shown to be consistent with an adequate degree of certainty; no evidence has been found that would support the existence of yet unknown chemical mechanisms making a significant contribution to polar ozone loss. (4) Global modelling: results from process studies have been implemented in a prognostic chemistry climate model (CCM); simulations with improved parameterisations of processes relevant for polar ozone depletion are evaluated against satellite data and other long term records using data assimilation and detrended fluctuation analysis. Finally, measurements and process studies within RECONCILE were also applied to the winter 2010/11, when special meteorological conditions led to the highest chemical ozone loss ever observed in the Arctic. In addition to quantifying the 2010/11 ozone loss and to understand its causes including possible connections to climate change, its impacts were addressed, such as changes in surface ultraviolet (UV) radiation in the densely populated northern mid-latitudes.


2015 ◽  
Vol 14 (1) ◽  
pp. 170-184 ◽  
Author(s):  
A. L. Andrady ◽  
A. Torikai ◽  
H. H. Redhwi ◽  
K. K. Pandey ◽  
P. Gies

Materials used in the exterior of buildings and in construction are routinely exposed to solar UV radiation. Especially in the case of wood and plastic building materials, the service life is determined by their weather-induced deterioration.


2009 ◽  
Vol 21 (5) ◽  
pp. 439-448 ◽  
Author(s):  
Wojciech Majewski ◽  
Andrzej Tatur

AbstractCribroelphidium webbi sp. nov. is the only adequately described sub-Recent elphidiid foraminifer from Antarctica. In Admiralty Bay (King George Island, South Shetland Islands), it is found at several locations within inner fiord setting at water depths between 33 and 165 m, but most commonly shallower than 100 m. In outer basins this foraminifer is absent. In the cores analysed, C. webbi sp. nov. is present in well-constrained sub-Recent horizons that are clearly related to climate warming and deglaciation. These horizons represent a diachronous facies marker rather than a single stratigraphic layer. Cribroelphidium webbi sp. nov. shows clear association with retreating tidewater glaciers, therefore it is an important sensitive glacier-proximal indicator. It appears that it shares similar ecologic affinities with Cribroelphidium excavatum clavatum, which is widely distributed throughout the Arctic.


2017 ◽  
Vol 13 (12) ◽  
pp. 20170497 ◽  
Author(s):  
Simon Vitt ◽  
Janina E. Zierul ◽  
Theo C. M. Bakker ◽  
Ingolf P. Rick

Ultraviolet-B radiation (UVB) reaching the earth's surface has increased due to human-caused stratospheric ozone depletion. Whereas the harmful effects of UVB on aquatic organisms are well studied at the molecular and cellular level, recent studies have also begun to address behavioural changes caused by sublethal amounts of UVB. However, the behavioural consequences of long-term exposure to ecologically relevant UVB levels over several life stages are virtually unknown, particularly with regard to predator–prey behaviour. We found increased predator-inspection behaviour together with a smaller body length in three-spined sticklebacks ( Gasterosteus aculeatus ) after fish were exposed for about seven months to natural sunlight conditions with enhanced UVB, compared with full siblings exposed to natural sunlight only. The observed change in antipredator behaviour may reflect a direct behavioural response mediated through UVB-induced oxidative stress during development. Alternatively, the smaller body size in UVB-exposed fish may result in an increased inspection effort allowing them to spend more time foraging. Our findings suggest that, within the scope of environmental change, UVB radiation constitutes an important stress factor by eliciting behavioural responses that influence crucial ecological processes, such as predator–prey interactions.


2021 ◽  
Author(s):  
Ramina Alwarda ◽  
Kristof Bognar ◽  
Kimberly Strong ◽  
Martyn Chipperfield ◽  
Sandip Dhomse ◽  
...  

<p>The Arctic winter of 2019-2020 was characterized by an unusually persistent polar vortex and temperatures in the lower stratosphere that were consistently below the threshold for the formation of polar stratospheric clouds (PSCs). These conditions led to ozone loss that is comparable to the Antarctic ozone hole. Ground-based measurements from a suite of instruments at the Polar Environment Atmospheric Research Laboratory (PEARL) in Eureka, Canada (80.05°N, 86.42°W) were used to investigate chemical ozone depletion. The vortex was located above Eureka longer than in any previous year in the 20-year dataset and lidar measurements provided evidence of polar stratospheric clouds (PSCs) above Eureka. Additionally, UV-visible zenith-sky Differential Optical Absorption Spectroscopy (DOAS) measurements showed record ozone loss in the 20-year dataset, evidence of denitrification along with the slowest increase of NO<sub>2</sub> during spring, as well as enhanced reactive halogen species (OClO and BrO). Complementary measurements of HCl and ClONO<sub>2</sub> (chlorine reservoir species) from a Fourier transform infrared (FTIR) spectrometer showed unusually low columns that were comparable to 2011, the previous year with significant chemical ozone depletion. Record low values of HNO<sub>3</sub> in the FTIR dataset are in accordance with the evidence of PSCs and a denitrified atmosphere. Estimates of chemical ozone loss were derived using passive ozone from the SLIMCAT offline chemical transport model to account for dynamical contributions to the stratospheric ozone budget.</p>


Sign in / Sign up

Export Citation Format

Share Document