Species richness, abundance, and composition of hypogeous and epigeous ectomycorrhizal fungal sporocarps in young, rotation-age, and old-growth stands of Douglas-fir (Pseudotsuga menziesii) in the Cascade Range of Oregon, U.S.A.

2002 ◽  
Vol 80 (2) ◽  
pp. 186-204 ◽  
Author(s):  
J E Smith ◽  
R Molina ◽  
M MP Huso ◽  
D L Luoma ◽  
D McKay ◽  
...  

Knowledge of the community structure of ectomycorrhizal fungi among successional forest age-classes is critical for conserving fungal species diversity. Hypogeous and epigeous sporocarps were collected from three replicate stands in each of three forest age-classes (young, rotation-age, and old-growth) of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) dominated stands with mesic plant association groups. Over four fall and three spring seasons, 48 hypogeous and 215 epigeous species or species groups were collected from sample areas of 6300 and 43 700 m2, respectively. Cumulative richness of hypogeous and epigeous species was similar among age-classes but differed between seasons. Thirty-six percent of the species were unique to an age-class: 50 species to old-growth, 19 to rotation-age, and 25 to young stands. Seventeen species (eight hypogeous and nine epigeous) accounted for 79% of the total sporocarp biomass; two hypogeous species, Gautieria monticola Harkn., and Hysterangium crassirhachis Zeller and Dodge, accounted for 41%. Average sporocarp biomass in young and rotation-age stands compared with old-growth stands was about three times greater for hypogeous sporocarps and six times greater for epigeous sporocarps. Average hypogeous sporocarp biomass was about 2.4 times greater in spring compared with fall and for epigeous sporocarps about 146 times greater in fall compared with spring. Results demonstrated differences in ectomycorrhizal fungal sporocarp abundance and species composition among successional forest age-classes.Key words: ectomycorrhizal fungi, sporocarp production, forest succession, Pseudotsuga menziesii, Tsuga heterophylla zone, biodiversity.

2000 ◽  
Vol 78 (8) ◽  
pp. 995-1001 ◽  
Author(s):  
J E Smith ◽  
R Molina ◽  
M MP Huso ◽  
M J Larsen

Yellow mycelia and cords of Piloderma fallax (Lib.) Stalp. were more frequently observed in old-growth stands than in younger managed stands of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco). Piloderma fallax frequency and percent cover data were collected from 900 plots in three replicate stands in each of three forest age classes over 2 years in both spring and fall. Piloderma fallax is strongly associated with stand age; it occurred in 57% of plots in old-growth, 6% of rotation-age, and 1% of young stands. Presence of Piloderma fallax was related to the percent cover of coarse woody debris (CWD) in decay class 5. Piloderma fallax was approximately 2.5 times more likely to occur in a plot with CWD decay class 5 present than in plots without. The probability that it would occur in a plot increased by approximately 20% for every 10% increase in percent cover of CWD decay class 5. However, the percent cover of Piloderma fallax was not strongly related to the percent cover of CWD in decay class 5. Frequency of occurrence did not differ among sampling times. Occurrence of Piloderma fallax may indicate suitable substrate for ectomycorrhizal fungi associated with CWD and may be important in forest management for the maintenance of biodiversity and old-growth components in young managed stands.Key words: Piloderma fallax, coarse woody debris, Pseudotsuga menziesii, forest management, ectomycorrhizal fungi, biodiversity.


2014 ◽  
Vol 44 (9) ◽  
pp. 1068-1078 ◽  
Author(s):  
James A. Freund ◽  
Jerry F. Franklin ◽  
Andrew J. Larson ◽  
James A. Lutz

The rate at which trees regenerate following stand-replacing wildfire is an important but poorly understood process in the multi-century development of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and western hemlock (Tsuga heterophylla (Raf.) Sarg.) forests. Temporal patterns of Douglas-fir establishment reconstructed from old-growth forests (>450 year) have generated contradictory models of either rapid (<25 year) or prolonged (>100 year) periods of establishment, while patterns of tree establishment in mid-aged (100 to 350 year) forests remains largely unknown. To determine temporal patterns of Douglas-fir establishment following stand-replacing fire, increment cores were obtained from 1455 trees in 18 mature and early old-growth forests in western Washington and northwestern Oregon, USA. Each of the stands showed continuous regeneration of Douglas-fir for many decades following initiating fire. The establishment period averaged 60 years (range: 32–99 years). These results contrast both with the view of rapid (one- to two-decade) regeneration of Douglas-fir promoted in the early forestry literature and with reports of establishment periods exceeding 100 years in older (>400 year) Douglas-fir–western hemlock stands. These results have important implications for management designed to create and promote early-seral forest characteristics.


2019 ◽  
Vol 433 ◽  
pp. 105-110
Author(s):  
Matthew E. Hane ◽  
Andrew J. Kroll ◽  
Aaron Springford ◽  
Jack Giovanini ◽  
Mike Rochelle ◽  
...  

2002 ◽  
Vol 32 (6) ◽  
pp. 1057-1070 ◽  
Author(s):  
Linda E Winter ◽  
Linda B Brubaker ◽  
Jerry F Franklin ◽  
Eric A Miller ◽  
Donald Q DeWitt

The history of canopy disturbances over the lifetime of an old-growth Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) stand in the western Cascade Range of southern Washington was reconstructed using tree-ring records of cross-dated samples from a 3.3-ha mapped plot. The reconstruction detected pulses in which many western hemlock (Tsuga heterophylla (Raf.) Sarg.) synchronously experienced abrupt and sustained increases in ringwidth, i.e., "growth-increases", and focused on medium-sized or larger ([Formula: see text]0.8 ha) events. The results show that the stand experienced at least three canopy disturbances that each thinned, but did not clear, the canopy over areas [Formula: see text]0.8 ha, occurring approximately in the late 1500s, the 1760s, and the 1930s. None of these promoted regeneration of the shade-intolerant Douglas-fir, all of which established 1500–1521. The disturbances may have promoted regeneration of western hemlock, but their strongest effect on tree dynamics was to elicit western hemlock growth-increases. Canopy disturbances are known to create patchiness, or horizontal heterogeneity, an important characteristic of old-growth forests. This reconstructed history provides one model for restoration strategies to create horizontal heterogeneity in young Douglas-fir stands, for example, by suggesting sizes of areas to thin in variable-density thinnings.


2004 ◽  
Vol 34 (6) ◽  
pp. 1296-1310 ◽  
Author(s):  
Olli Tahvonen

This study combines timber production and environmental values, applying a dynamic forest-level economic model with any number of forest age-classes. The model includes endogenous timber price or nonlinear harvesting costs and various possibilities to specify the dependence of environmental values (related e.g. to species persistence) on the forest age-class structure. The nonlinearities in the net benefits from timber production have the consequence that fluctuations in optimal timber harvesting may totally vanish or at least become smaller than in forest scheduling models without ad hoc even flow constraints. If environmental values are specified to depend on the fraction of forest land preserved as old growth, the optimal long run allocation between timber production and old growth is represented by an equilibrium continuum. Thus the optimal long run allocation depends on the initial age-class distribution. The continuum and the dependence of initial age-class distribution vanish when the rate of discount approaches zero. If the environmental values of age-classes increase smoothly with age, the long run equilibrium may simultaneously include multiple rotation periods. The model determines the optimality of producing timber and environmental values separately at different parts of the forest or at the same piece of forest land. Numerical computation suggests that the optimal solution always converges toward some optimal long run stationary age-class distribution.


1987 ◽  
Vol 2 (1) ◽  
pp. 22-25 ◽  
Author(s):  
Michael Newton ◽  
Elizebeth C. Cole

Abstract From analysis of two Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) stands, 120 and 140 years old, we conclude that managed stands can meet established criteria for old-growth Douglas-fir and simultaneously produce near-maximum yields of good-quality timber. With the management approach outlined here, average annual volume growth may approach that of shorter-rotation culture, but in logs of a size and quality normally found only in older stands, and with minimal impact on high-risk watersheds or old-growth habitat. This possibility encourages development of silvicultural systems that can achieve such goals in a variety of timber types. West. J. Appl. For. 2:22-25, Jan. 1987.


1964 ◽  
Vol 40 (3) ◽  
pp. 298-307 ◽  
Author(s):  
K. J. Mitchell

Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) plantations on the east coast of Vancouver Island, British Columbia, were examined to determine the effect of animal feeding upon height growth.Length of internodes and evidence of past leader damage were recorded and cumulative average height-age growth curves compared for undamaged trees and for trees suffering various intensities of damage.The average reduction in tree height attributable to animal feeding in heavily browsed plantations varied from one-half to two feet over a period of 8 to 10 years. It is unlikely that either tree volume or quality at rotation age would be seriously affected.Exposed trees were browsed more heavily than those protected by vegetation or logging slash.


2003 ◽  
Vol 11 (S1) ◽  
pp. S135-S157 ◽  
Author(s):  
M C Feller

This paper synthesizes data extracted from the literature and data collected in various studies by the author on the quantity, characteristics, and functional importance of coarse woody debris (CWD) in the old-growth forests of British Columbia (B.C.). There is little agreement in the literature about the minimum diameter of CWD or the number of decay classes recognized. In western North America, five decay classes are commonly used, but recent studies suggest fewer decay classes are preferable. Comparisons among decay classes and biogeoclimatic zones and subzones in B.C. reveal that quantities and volumes are greatest (up to approximately 60 kg/m2 and approximately 1800 m3/ha, respectively), and CWD persists the longest (sometimes in excess of 1000 years) in the Coastal Western Hemlock (CWH) biogeoclimatic zone. The quantity and ground cover of CWD increase with forest productivity. Persistence of CWD has varied from less than 100 to over 800 years in two coastal (CWH and Mountain Hemlock (MH)) and three interior (Interior Douglas-fir (IDF), Interior Cedar–Hemlock (ICH), and Engelmann Spruce – Subalpine Fir (ESSF)) biogeoclimatic zones. Trends in CWD quantity with forest age in managed coastal B.C. forests suggest a U-shaped curve, with greater quantities occurring in recent cutovers than in old-growth forests, and lowest quantities occurring in middle-aged forests. This may be the normal trend in CWD with forest age, with departures from this trend resulting from disturbance- or environment-specific factors. Relatively large amounts of data exist on the characteristics of CWD in the CWH, IDF, ICH, ESSF, and Boreal White and Black Spruce (BWBS) biogeoclimatic zones, but such data for the Coastal Douglas-fir, Sub-Boreal Pine–Spruce, Sub-Boreal Spruce (SBS), and Spruce–Willow–Birch biogeoclimatic zones appear relatively sparse. There have been few studies of the functional role of CWD in B.C. forests, but those studies that have been completed indicate that CWD is an important habitat component for some plant and animal species. A total of 169 plant species, including >95% of all lichens and liverworts, were found to grow on CWD in old-growth forests in the CWH, MH, IDF, ICH, and ESSF biogeoclimatic zones. One third of these species were restricted to CWD. Studies in several biogeoclimatic zones have found that CWD provided preferred habitat for and was associated with higher populations of some small animal species, such as shrews, some voles, and some salamanders, in old-growth forests, but the effects varied with species and biogeoclimatic zone. The nutrient cycling role of CWD is not yet well known, but it currently appears to be relatively insignificant in B.C. old-growth forests. Although it has been considered that CWD could increase mineral soil acidification and eluviation, no evidence for this was found in a study of the CWH, MH, IDF, ICH, ESSF, BWBS, and SBS biogeoclimatic zones. Future studies of the functional role of CWD should consider both scale (square metre vs. hectare) and temporal (changes in CWD with forest age) issues, as studies including these are sparse and both may be important. Key words: biogeoclimatic zones, British Columbia, coarse woody debris, old-growth forests.


Sign in / Sign up

Export Citation Format

Share Document