BIOSYNTHESIS OF PUNGENIN FROM C14-LABELLED COMPOUNDS BY COLORADO SPRUCE

1959 ◽  
Vol 37 (5) ◽  
pp. 1085-1100 ◽  
Author(s):  
A. C. Neish

A number of C14-labelled compounds were fed to detached leafy twigs of Colorado spruce (Picea pungens Engelm.), and after a metabolic period of 24 hours the pungenin was isolated and the specified activities of the glucose moiety and the aglycone (3,4-dihydroxyacetophenone) were determined. In some instances the aglycone was degraded further to determine the C14 in the methyl and carbonyl carbons separately.Caffeic acid and L-phenylalanine were the best precursors of the aglycone; cinnamic acid, p-coumaric acid, phenyllactic acid, and shikimic acid were quite good. Sodium acetate was a poor precursor, and was converted to glucose more readily than to the aglycone. Compounds found to be very poor precursors include tyrosine, 3,4-dihydroxyphenylalanine, 3-hydroxytyramine, phenylacetic acid, mandelic acid, p-hydroxyphenylpyruvic acid, p-hydroxyphenyllactic acid, p-hydroxybenzoic acid, and protocatechuic acid. Cinnamic acid-α-C14 gave 3,4-dihydroxyacetophenone labelled chiefly in the methyl group, while cinnamic acid-β-C14, L-phenylalanine-β-C14, p-coumaric acid-β-C14, and caffeic acid-β-C14 formed 3,4-dihydroxyacetophenone labelled mainly in the carbonyl carbon. It appears that a phenylethanoid compound is formed by a process involving the loss of the terminal carbon of a phenylpropanoid compound.3,4-Dihydroxyacetophenone-carbonyl-C14 was fed to spruce twigs bearing new terminal growth; up to 20% was converted to pungenin but most of it formed unidentified compounds. It was a poor precursor of lignin, compared with cinnamic acid, and a poor precursor of glutamic acid, relative to acetate.

1959 ◽  
Vol 37 (1) ◽  
pp. 537-547 ◽  
Author(s):  
D. R. McCalla ◽  
A. C. Neish

p-Coumaric, caffeic, ferulic, and sinapic acids were found to occur in Salvia splendens Sello in alkali-labile compounds of unknown constitution. A number of C14-labelled compounds were administered to leafy cuttings of salvia and these phenolic acids were isolated after a metabolic period of several hours and their specific activities measured. Cinnamic acid, dihydrocinnamic acid, L-phenylalanine, and (−)-phenyllactic acid were found to be good precursors of the phenolic acids. D-Phenylalanine, L-tyrosine, and (+)-phenyllactic acid were poor precursors. A kinetic study of the formation of the phenolic acids from L-phenylalanine-C14 gave data consistent with the view that p-coumaric acid → caffeic acid → ferulic acid → sinapic acid, and that these compounds can act as intermediates in lignification. Feeding of C14-labelled members of this series showed that salvia could convert any one to a more complex member of the series but not so readily to a simpler member. Caffeic acid-β-C14 was obtained from salvia after the feeding of L-phenylalanine-β-C14 or cinnamic acid-β-C14, and caffeic acid labelled only in the ring was obtained after feeding generally labelled shikimic acid.


1959 ◽  
Vol 37 (4) ◽  
pp. 537-547 ◽  
Author(s):  
D. R. McCalla ◽  
A. C. Neish

p-Coumaric, caffeic, ferulic, and sinapic acids were found to occur in Salvia splendens Sello in alkali-labile compounds of unknown constitution. A number of C14-labelled compounds were administered to leafy cuttings of salvia and these phenolic acids were isolated after a metabolic period of several hours and their specific activities measured. Cinnamic acid, dihydrocinnamic acid, L-phenylalanine, and (−)-phenyllactic acid were found to be good precursors of the phenolic acids. D-Phenylalanine, L-tyrosine, and (+)-phenyllactic acid were poor precursors. A kinetic study of the formation of the phenolic acids from L-phenylalanine-C14 gave data consistent with the view that p-coumaric acid → caffeic acid → ferulic acid → sinapic acid, and that these compounds can act as intermediates in lignification. Feeding of C14-labelled members of this series showed that salvia could convert any one to a more complex member of the series but not so readily to a simpler member. Caffeic acid-β-C14 was obtained from salvia after the feeding of L-phenylalanine-β-C14 or cinnamic acid-β-C14, and caffeic acid labelled only in the ring was obtained after feeding generally labelled shikimic acid.


1960 ◽  
Vol 38 (2) ◽  
pp. 143-156 ◽  
Author(s):  
Stewart A. Brown ◽  
G. H. N. Towers ◽  
D. Wright

Coumarin formation has been studied with C14in the perennial grass, Hierochloë odorata, and in yellow sweet clover, Melilotus officinalis. In general the latter species yielded inconsistent data. In Hierochloë, o-coumaric, cinnamic, and shikimic acids and L-phenylalanine were the best of 10 compounds tested as coumarin precursors, the first two at least being incorporated with little randomization of C14. Acetate was more poorly utilized. It was concluded that the aromatic ring of coumarin arises via the shikimic acid pathway in preference to acetate condensation. When the time of metabolism was varied, o-coumaryl glucoside and free o-coumaric acid rapidly acquired high specific activities from cinnamic acid-C14, but coumarin and melilotic acid became active much more slowly. A lag in the acquisition of C14by coumarin for the first 6 to 8 hours was followed by a rectilinear increase until at least 24 hours. Much the greatest accumulation of C14was found in o-coumaryl glucoside during this entire period. Furthermore, this compound when fed to Hierochloë is comparable to cinnamic acid as a coumarin precursor. These findings suggest a possible function for o-coumaryl glucoside or a derivative in coumarin biosynthesis.


1967 ◽  
Vol 45 (11) ◽  
pp. 1659-1665 ◽  
Author(s):  
Keith Moore ◽  
G. H. N. Towers

Growing cultures of Schizophyllum commune could produce 14CO2 from ring-labelled DL-phenylalanine-14C. Intermediates in the pathway of L-phenylalanine degradation prior to ring cleavage were shown to be cinnamic acid, benzoic acid, p-hydroxybenzoic acid, and protocatechuic acid. Phenylacetic acid and L(−)-β-phenyllactic acid were also identified as products of phenylalanine metabolism.


1966 ◽  
Vol 44 (4) ◽  
pp. 403-413 ◽  
Author(s):  
P. Chandra ◽  
G. Read ◽  
L. C. Vining

DL-Phenyllactic acid-α-14C, DL-phenylserine-α-14C, L-phenylalanine-carboxyl-14C, and shikimic acid-U-14C were incorporated into phenylalanine and tyrosine isolated from mycelial hydrolysates of Volucrispora aurantiaca as well as into volucrisporin. DL-m-Tyrosine-carboxyl-14C was incorporated into volucrisporin but not into the aromatic amino acids. L-Tyrosine-β-14C, cinnamic acid-α-14C, and m-hydroxycinnamic acid-α-14C were metabolized by the fungus but did not serve as precursors of volucrisporin or of mycelial phenylalanine. The results are consistent with the concept of a biosynthetic pathway to volucrisporin via phenylpyruvic and m-hydroxyphenylpyruvic acids. Substantial amounts of each radioactive substrate fed to V. aurantiaca PRL 1952 were incorporated into a brown melanoid pigment.


1986 ◽  
Vol 32 (6) ◽  
pp. 494-497 ◽  
Author(s):  
S. Nazareth ◽  
S. Mavinkurve

Fusarium solani (Mart.) Sacc. metabolizes ferulic acid to a transient intermediate, 4-vinylguaiacol, a compound hitherto not reported in the metabolic pathway of ferulic acid in fungi. The compound was isolated in pure form and identified spectrometrically. 4-Vinylguaiacol was further metabolized to vanillin, vanillic acid, and protocatechuic acid, followed by ortho cleavage of the aromatic ring. The organism was also found to catabolize eugenol and p-coumaric acid, but not cinnamic acid.


1960 ◽  
Vol 38 (1) ◽  
pp. 143-156 ◽  
Author(s):  
Stewart A. Brown ◽  
G. H. N. Towers ◽  
D. Wright

Coumarin formation has been studied with C14in the perennial grass, Hierochloë odorata, and in yellow sweet clover, Melilotus officinalis. In general the latter species yielded inconsistent data. In Hierochloë, o-coumaric, cinnamic, and shikimic acids and L-phenylalanine were the best of 10 compounds tested as coumarin precursors, the first two at least being incorporated with little randomization of C14. Acetate was more poorly utilized. It was concluded that the aromatic ring of coumarin arises via the shikimic acid pathway in preference to acetate condensation. When the time of metabolism was varied, o-coumaryl glucoside and free o-coumaric acid rapidly acquired high specific activities from cinnamic acid-C14, but coumarin and melilotic acid became active much more slowly. A lag in the acquisition of C14by coumarin for the first 6 to 8 hours was followed by a rectilinear increase until at least 24 hours. Much the greatest accumulation of C14was found in o-coumaryl glucoside during this entire period. Furthermore, this compound when fed to Hierochloë is comparable to cinnamic acid as a coumarin precursor. These findings suggest a possible function for o-coumaryl glucoside or a derivative in coumarin biosynthesis.


1957 ◽  
Vol 35 (3) ◽  
pp. 219-228 ◽  
Author(s):  
E. W. Underhill ◽  
J. E. Watkin ◽  
A. C. Neish

Cuttings of Fagopyrum tataricum were allowed to metabolize various labelled compounds for 24 hours in the light. Quercetin was then isolated and degraded by alkaline hydrolysis of its pentamethyl ether into veratric acid (ring B plus carbon 2) and 2′-hydroxy-2,4′,6′-trimethoxyacetophenone (ring A plus carbons 3 and 4). Eleven amino acids, including tyrosine, were poor precursors of quercetin as were also protocatechuic acid and p-hydroxybenzoic acid. Shikimic acid, phenylalanine, p-hydroxycinnamic acid, and cinnamic acid were very good precursors followed by (in decreasing order of effectiveness) caffeic acid (fair), sinapic acid, m-methoxycinnamic acid, and ferulic acid (very poor). Quercetin formed from β- or ring-labelled cinnamic acid gave labelled veratric acid on degradation, and that from α- or carboxyl-labelled cinnamic acid gave labelled 2′-hydroxy-2,4′,6′-trimethoxyacetophenone. Two-ninths of the activity of quercetin formed from uniformly labelled phenylalanine was found in the acetophenone derivative and seven-ninths in the veratric acid. These results show that C6.C3 compounds are used with the carbon skeleton unchanged for the synthesis of ring B and carbons 2, 3, and 4 of quercetin and that the ring hydroxylation pattern of the compound used determines its effectiveness. None of the compounds were good precursors of ring A.


1968 ◽  
Vol 106 (2) ◽  
pp. 507-514 ◽  
Author(s):  
Keith Moore ◽  
P. V. Subba Rao ◽  
G. H. N. Towers

Ammonia-lyase activity for l-phenylalanine, m-hydroxyphenylalanine and l-tyrosine was demonstrated in cell-free extracts of Sporobolomyces roseus. Cultures of this organism converted dl-[ring−14C]phenylalanine and l-[U−14C]tyrosine into the corresponding cinnamic acid. Tracer studies showed that these compounds were further metabolized to [14C]protocatechuic acid. Benzoic acid and p-hydroxybenzoic acid were intermediates in this pathway. Washed cells of the organism readily utilized cinnamic acid, p-coumaric acid, caffeic acid, benzoic acid and p-hydroxybenzoic acid. Protocatechuic acid was the terminal aromatic compound formed during the metabolism of these compounds. The cells of S. roseus were able to convert m-coumaric acid into m-hydroxybenzoic acid, but the latter compound, which accumulated in the medium, was not further metabolized. 4-Hydroxycoumarin was identified as the product of o-coumaric acid metabolism by this organism.


2018 ◽  
Vol 13 (5) ◽  
pp. 1934578X1801300 ◽  
Author(s):  
Thalía Ramírez-Reyes ◽  
Juan L. Monribot-Villanueva ◽  
Oscar D. Jiménez-Martínez ◽  
Ángel S. Aguilar-Colorado ◽  
Israel Bonilla-Landa ◽  
...  

Bioassay-guided fractionation of an active crude extract (EtOAc) of polyfollicles of Magnolia vovidessi, an endemic medicinal plant of the cloud forest of Mexico, led to the isolation and identification of shizukolidol (1), an eudesmane-type sesquiterpenoid lactone that showed antibacterial activity against the economically important phytopathogenic bacterium Chryseobacterium sp. (MIC= 400 μg/mL). In addition, 4α,8β-dihydroxy-5α(H)-eudesm-7(11)-en-8,12-olide 8 (2), rutin, scopoline and scopoletine were also isolated as were mexicanin, parthenolide, costunolide, astragalin, quercetin, hesperidin, p-coumaric acid, chlorogenic acid, vanillin, vanillic acid, 4-hydroxybenzoic acid, protocatechuic acid and shikimic acid identified by a dereplication-like procedure using LC-ESI-MS/MS. Rutin displayed mild anti-oomicite activity against phytopathogen Phytophthora cinnamomi.


Sign in / Sign up

Export Citation Format

Share Document