BIOSYNTHESIS OF QUERCETIN IN BUCKWHEAT: PART I

1957 ◽  
Vol 35 (3) ◽  
pp. 219-228 ◽  
Author(s):  
E. W. Underhill ◽  
J. E. Watkin ◽  
A. C. Neish

Cuttings of Fagopyrum tataricum were allowed to metabolize various labelled compounds for 24 hours in the light. Quercetin was then isolated and degraded by alkaline hydrolysis of its pentamethyl ether into veratric acid (ring B plus carbon 2) and 2′-hydroxy-2,4′,6′-trimethoxyacetophenone (ring A plus carbons 3 and 4). Eleven amino acids, including tyrosine, were poor precursors of quercetin as were also protocatechuic acid and p-hydroxybenzoic acid. Shikimic acid, phenylalanine, p-hydroxycinnamic acid, and cinnamic acid were very good precursors followed by (in decreasing order of effectiveness) caffeic acid (fair), sinapic acid, m-methoxycinnamic acid, and ferulic acid (very poor). Quercetin formed from β- or ring-labelled cinnamic acid gave labelled veratric acid on degradation, and that from α- or carboxyl-labelled cinnamic acid gave labelled 2′-hydroxy-2,4′,6′-trimethoxyacetophenone. Two-ninths of the activity of quercetin formed from uniformly labelled phenylalanine was found in the acetophenone derivative and seven-ninths in the veratric acid. These results show that C6.C3 compounds are used with the carbon skeleton unchanged for the synthesis of ring B and carbons 2, 3, and 4 of quercetin and that the ring hydroxylation pattern of the compound used determines its effectiveness. None of the compounds were good precursors of ring A.

1957 ◽  
Vol 35 (1) ◽  
pp. 219-228 ◽  
Author(s):  
E. W. Underhill ◽  
J. E. Watkin ◽  
A. C. Neish

Cuttings of Fagopyrum tataricum were allowed to metabolize various labelled compounds for 24 hours in the light. Quercetin was then isolated and degraded by alkaline hydrolysis of its pentamethyl ether into veratric acid (ring B plus carbon 2) and 2′-hydroxy-2,4′,6′-trimethoxyacetophenone (ring A plus carbons 3 and 4). Eleven amino acids, including tyrosine, were poor precursors of quercetin as were also protocatechuic acid and p-hydroxybenzoic acid. Shikimic acid, phenylalanine, p-hydroxycinnamic acid, and cinnamic acid were very good precursors followed by (in decreasing order of effectiveness) caffeic acid (fair), sinapic acid, m-methoxycinnamic acid, and ferulic acid (very poor). Quercetin formed from β- or ring-labelled cinnamic acid gave labelled veratric acid on degradation, and that from α- or carboxyl-labelled cinnamic acid gave labelled 2′-hydroxy-2,4′,6′-trimethoxyacetophenone. Two-ninths of the activity of quercetin formed from uniformly labelled phenylalanine was found in the acetophenone derivative and seven-ninths in the veratric acid. These results show that C6.C3 compounds are used with the carbon skeleton unchanged for the synthesis of ring B and carbons 2, 3, and 4 of quercetin and that the ring hydroxylation pattern of the compound used determines its effectiveness. None of the compounds were good precursors of ring A.


1959 ◽  
Vol 37 (1) ◽  
pp. 537-547 ◽  
Author(s):  
D. R. McCalla ◽  
A. C. Neish

p-Coumaric, caffeic, ferulic, and sinapic acids were found to occur in Salvia splendens Sello in alkali-labile compounds of unknown constitution. A number of C14-labelled compounds were administered to leafy cuttings of salvia and these phenolic acids were isolated after a metabolic period of several hours and their specific activities measured. Cinnamic acid, dihydrocinnamic acid, L-phenylalanine, and (−)-phenyllactic acid were found to be good precursors of the phenolic acids. D-Phenylalanine, L-tyrosine, and (+)-phenyllactic acid were poor precursors. A kinetic study of the formation of the phenolic acids from L-phenylalanine-C14 gave data consistent with the view that p-coumaric acid → caffeic acid → ferulic acid → sinapic acid, and that these compounds can act as intermediates in lignification. Feeding of C14-labelled members of this series showed that salvia could convert any one to a more complex member of the series but not so readily to a simpler member. Caffeic acid-β-C14 was obtained from salvia after the feeding of L-phenylalanine-β-C14 or cinnamic acid-β-C14, and caffeic acid labelled only in the ring was obtained after feeding generally labelled shikimic acid.


1959 ◽  
Vol 37 (5) ◽  
pp. 1085-1100 ◽  
Author(s):  
A. C. Neish

A number of C14-labelled compounds were fed to detached leafy twigs of Colorado spruce (Picea pungens Engelm.), and after a metabolic period of 24 hours the pungenin was isolated and the specified activities of the glucose moiety and the aglycone (3,4-dihydroxyacetophenone) were determined. In some instances the aglycone was degraded further to determine the C14 in the methyl and carbonyl carbons separately.Caffeic acid and L-phenylalanine were the best precursors of the aglycone; cinnamic acid, p-coumaric acid, phenyllactic acid, and shikimic acid were quite good. Sodium acetate was a poor precursor, and was converted to glucose more readily than to the aglycone. Compounds found to be very poor precursors include tyrosine, 3,4-dihydroxyphenylalanine, 3-hydroxytyramine, phenylacetic acid, mandelic acid, p-hydroxyphenylpyruvic acid, p-hydroxyphenyllactic acid, p-hydroxybenzoic acid, and protocatechuic acid. Cinnamic acid-α-C14 gave 3,4-dihydroxyacetophenone labelled chiefly in the methyl group, while cinnamic acid-β-C14, L-phenylalanine-β-C14, p-coumaric acid-β-C14, and caffeic acid-β-C14 formed 3,4-dihydroxyacetophenone labelled mainly in the carbonyl carbon. It appears that a phenylethanoid compound is formed by a process involving the loss of the terminal carbon of a phenylpropanoid compound.3,4-Dihydroxyacetophenone-carbonyl-C14 was fed to spruce twigs bearing new terminal growth; up to 20% was converted to pungenin but most of it formed unidentified compounds. It was a poor precursor of lignin, compared with cinnamic acid, and a poor precursor of glutamic acid, relative to acetate.


1966 ◽  
Vol 44 (4) ◽  
pp. 403-413 ◽  
Author(s):  
P. Chandra ◽  
G. Read ◽  
L. C. Vining

DL-Phenyllactic acid-α-14C, DL-phenylserine-α-14C, L-phenylalanine-carboxyl-14C, and shikimic acid-U-14C were incorporated into phenylalanine and tyrosine isolated from mycelial hydrolysates of Volucrispora aurantiaca as well as into volucrisporin. DL-m-Tyrosine-carboxyl-14C was incorporated into volucrisporin but not into the aromatic amino acids. L-Tyrosine-β-14C, cinnamic acid-α-14C, and m-hydroxycinnamic acid-α-14C were metabolized by the fungus but did not serve as precursors of volucrisporin or of mycelial phenylalanine. The results are consistent with the concept of a biosynthetic pathway to volucrisporin via phenylpyruvic and m-hydroxyphenylpyruvic acids. Substantial amounts of each radioactive substrate fed to V. aurantiaca PRL 1952 were incorporated into a brown melanoid pigment.


1959 ◽  
Vol 37 (4) ◽  
pp. 537-547 ◽  
Author(s):  
D. R. McCalla ◽  
A. C. Neish

p-Coumaric, caffeic, ferulic, and sinapic acids were found to occur in Salvia splendens Sello in alkali-labile compounds of unknown constitution. A number of C14-labelled compounds were administered to leafy cuttings of salvia and these phenolic acids were isolated after a metabolic period of several hours and their specific activities measured. Cinnamic acid, dihydrocinnamic acid, L-phenylalanine, and (−)-phenyllactic acid were found to be good precursors of the phenolic acids. D-Phenylalanine, L-tyrosine, and (+)-phenyllactic acid were poor precursors. A kinetic study of the formation of the phenolic acids from L-phenylalanine-C14 gave data consistent with the view that p-coumaric acid → caffeic acid → ferulic acid → sinapic acid, and that these compounds can act as intermediates in lignification. Feeding of C14-labelled members of this series showed that salvia could convert any one to a more complex member of the series but not so readily to a simpler member. Caffeic acid-β-C14 was obtained from salvia after the feeding of L-phenylalanine-β-C14 or cinnamic acid-β-C14, and caffeic acid labelled only in the ring was obtained after feeding generally labelled shikimic acid.


Separations ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 13
Author(s):  
Petra Ranušová ◽  
Ildikó Matušíková ◽  
Peter Nemeček

A solid-phase extraction (SPE) procedure was developed for simultaneous monitoring of sixteen different phenolics of various polarity, quantified by high-performance liquid chromatography (HPLC). The procedure allowed screening the accumulation of intermediates in different metabolic pathways that play a crucial role in plant physiology and/or are beneficial for human health. Metabolites mostly involved in phenylpropanoid, shikimate, and polyketide pathways comprise chlorogenic acid, gentisic acid, vanillic acid, caffeic acid, protocatechuic acid, ferulic acid, rutin, quercetin, epicatechin, gallic acid, sinapic acid, p-coumaric acid, o-coumaric acid, vanillin; two rarely quantified metabolites, 2,5-dimethoxybenzoic acid and 4-methoxycinnamic acid, were included as well. The procedure offered low cost, good overall efficiency, and applicability in laboratories with standard laboratory equipment. SPE recoveries were up to 99.8% at various concentration levels. The method allowed for routine analysis of compounds with a wide range of polarity within a single run, while its applicability was demonstrated for various model plant species (tobacco, wheat, and soybean), as well as different tissue types (shoots and roots).


1964 ◽  
Vol 19 (9) ◽  
pp. 781-783 ◽  
Author(s):  
Hans Grisebach ◽  
Karl-Otto Vollmer

Further investigations on the biosynthesis of benzoic acids in Gaultheria procumbens L. have shown that besides salicylic acid all the other benzoic acids (gentisinic acid, p-hydroxybenzoic acid, protocatechuic acid, o-pyrocatechuic acid(?), syringic acid and vanillinic acid) can be formed from cinnamic acid. In the case of vanillinic acid it was proved that the total activity is located in the carboxyl group when cinnamic acid-[3-14C] is the precursor.Formiat-14C is incorporated into the methylester group of methylsalicylate.


1960 ◽  
Vol 38 (2) ◽  
pp. 143-156 ◽  
Author(s):  
Stewart A. Brown ◽  
G. H. N. Towers ◽  
D. Wright

Coumarin formation has been studied with C14in the perennial grass, Hierochloë odorata, and in yellow sweet clover, Melilotus officinalis. In general the latter species yielded inconsistent data. In Hierochloë, o-coumaric, cinnamic, and shikimic acids and L-phenylalanine were the best of 10 compounds tested as coumarin precursors, the first two at least being incorporated with little randomization of C14. Acetate was more poorly utilized. It was concluded that the aromatic ring of coumarin arises via the shikimic acid pathway in preference to acetate condensation. When the time of metabolism was varied, o-coumaryl glucoside and free o-coumaric acid rapidly acquired high specific activities from cinnamic acid-C14, but coumarin and melilotic acid became active much more slowly. A lag in the acquisition of C14by coumarin for the first 6 to 8 hours was followed by a rectilinear increase until at least 24 hours. Much the greatest accumulation of C14was found in o-coumaryl glucoside during this entire period. Furthermore, this compound when fed to Hierochloë is comparable to cinnamic acid as a coumarin precursor. These findings suggest a possible function for o-coumaryl glucoside or a derivative in coumarin biosynthesis.


Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1527
Author(s):  
Rocío B. Rodríguez ◽  
Daniela Iguchi ◽  
Rosa Erra-Balsells ◽  
M. Laura Salum ◽  
Pablo Froimowicz

This study focuses on the catalytic effect of the two geometric isomers of a cinnamic acid derivative, E and Z-forms of 3-methoxycinnamic acid (3OMeCA), analyzing the influence of their chemical structures. E and Z-3OMeCA isomers show very good catalytic effect in the polymerization of benzoxazines, decreasing by 40 and 55 °C, respectively, the polymerization temperatures, for catalyst contents of up to 10% w/w. Isothermal polymerizations show that polymerizations are easily realized and analyzed at temperatures as low as 130 °C and at much shorter times using Z-3OMeCA instead of E-3OMeCA. Thus, both cinnamic acids are good catalysts, with Z-3OMeCA being better. The molecular reasons for this difference and mechanistic implications in benzoxazine polymerizations are also presented.


Sign in / Sign up

Export Citation Format

Share Document