METABOLISM OF PHENYLPROPANOID COMPOUNDS IN SALVIA: II. BIOSYNTHESIS OF PHENOLIC CINNAMIC ACIDS

1959 ◽  
Vol 37 (4) ◽  
pp. 537-547 ◽  
Author(s):  
D. R. McCalla ◽  
A. C. Neish

p-Coumaric, caffeic, ferulic, and sinapic acids were found to occur in Salvia splendens Sello in alkali-labile compounds of unknown constitution. A number of C14-labelled compounds were administered to leafy cuttings of salvia and these phenolic acids were isolated after a metabolic period of several hours and their specific activities measured. Cinnamic acid, dihydrocinnamic acid, L-phenylalanine, and (−)-phenyllactic acid were found to be good precursors of the phenolic acids. D-Phenylalanine, L-tyrosine, and (+)-phenyllactic acid were poor precursors. A kinetic study of the formation of the phenolic acids from L-phenylalanine-C14 gave data consistent with the view that p-coumaric acid → caffeic acid → ferulic acid → sinapic acid, and that these compounds can act as intermediates in lignification. Feeding of C14-labelled members of this series showed that salvia could convert any one to a more complex member of the series but not so readily to a simpler member. Caffeic acid-β-C14 was obtained from salvia after the feeding of L-phenylalanine-β-C14 or cinnamic acid-β-C14, and caffeic acid labelled only in the ring was obtained after feeding generally labelled shikimic acid.

1959 ◽  
Vol 37 (1) ◽  
pp. 537-547 ◽  
Author(s):  
D. R. McCalla ◽  
A. C. Neish

p-Coumaric, caffeic, ferulic, and sinapic acids were found to occur in Salvia splendens Sello in alkali-labile compounds of unknown constitution. A number of C14-labelled compounds were administered to leafy cuttings of salvia and these phenolic acids were isolated after a metabolic period of several hours and their specific activities measured. Cinnamic acid, dihydrocinnamic acid, L-phenylalanine, and (−)-phenyllactic acid were found to be good precursors of the phenolic acids. D-Phenylalanine, L-tyrosine, and (+)-phenyllactic acid were poor precursors. A kinetic study of the formation of the phenolic acids from L-phenylalanine-C14 gave data consistent with the view that p-coumaric acid → caffeic acid → ferulic acid → sinapic acid, and that these compounds can act as intermediates in lignification. Feeding of C14-labelled members of this series showed that salvia could convert any one to a more complex member of the series but not so readily to a simpler member. Caffeic acid-β-C14 was obtained from salvia after the feeding of L-phenylalanine-β-C14 or cinnamic acid-β-C14, and caffeic acid labelled only in the ring was obtained after feeding generally labelled shikimic acid.


2017 ◽  
Vol 44 (No. 4) ◽  
pp. 178-185 ◽  
Author(s):  
Alina Kałużewicz ◽  
Jolanta Lisiecka ◽  
Monika Gąsecka ◽  
Włodzimierz Krzesiński ◽  
Tomasz Spiżewski ◽  
...  

This study was conducted to study the influence of plant density and irrigation on the content of phenolic compounds, i.e., phenolic acids and flavonols in cv. ‘Sevilla’ cauliflower curds. Levels of phenolic acids and flavonols were in the range of 3.0–6.2 mg and 25.4–87.8 mg/100 g of dry weight, respectively, depending on plant density and irrigation. Of the phenolic acids, caffeic acid was detected in the highest amount, followed by p-coumaric acid, sinapic acid, gallic acid, and ferulic acid. Of the two flavonols detected, the levels of quercetin were higher than those of kaempferol. The content of the detected phenolic acids (with the exception of ferulic acid) and both flavonols increased with increasing plant density. Furthermore, the concentration of phenolic compounds (with the exception of ferulic acid) was significantly higher under irrigation.


2011 ◽  
Vol 94 (1) ◽  
pp. 9-16 ◽  
Author(s):  
Anna Bogucka-Kocka ◽  
Katarzyna Szewczyk ◽  
Magdalena Janyszek ◽  
Sławomir Janyszek ◽  
Łukasz Cieśla

Abstract Eighteen species belonging to the Carex genus were checked for the presence and the amount of eight phenolic acids (p-hydroxybenzoic, vanillic, caffeic, syringic, protocatechuic, p-coumaric, sinapic, and ferulic) by means of HPLC. Both the free and bonded phenolic acids were analyzed. The majority of the analyzed acids occurred in the studied species in relatively high amounts. The highest concentrations found were caffeic acid and p-coumaric acid, for which the detected levels were negatively correlated. A very interesting feature was the occurrence of sinapic acid, a compound very rarely detected in plant tissues. Its distribution across the analyzed set of species can be hypothetically connected with the humidity of plants' habitats. Several attempted tests of aggregative cluster analysis showed no similarity to the real taxonomical structure of the genus Carex. Thus, the phenolic acids' composition cannot be considered as the major taxonomical feature for the genus Carex.


1960 ◽  
Vol 38 (2) ◽  
pp. 143-156 ◽  
Author(s):  
Stewart A. Brown ◽  
G. H. N. Towers ◽  
D. Wright

Coumarin formation has been studied with C14in the perennial grass, Hierochloë odorata, and in yellow sweet clover, Melilotus officinalis. In general the latter species yielded inconsistent data. In Hierochloë, o-coumaric, cinnamic, and shikimic acids and L-phenylalanine were the best of 10 compounds tested as coumarin precursors, the first two at least being incorporated with little randomization of C14. Acetate was more poorly utilized. It was concluded that the aromatic ring of coumarin arises via the shikimic acid pathway in preference to acetate condensation. When the time of metabolism was varied, o-coumaryl glucoside and free o-coumaric acid rapidly acquired high specific activities from cinnamic acid-C14, but coumarin and melilotic acid became active much more slowly. A lag in the acquisition of C14by coumarin for the first 6 to 8 hours was followed by a rectilinear increase until at least 24 hours. Much the greatest accumulation of C14was found in o-coumaryl glucoside during this entire period. Furthermore, this compound when fed to Hierochloë is comparable to cinnamic acid as a coumarin precursor. These findings suggest a possible function for o-coumaryl glucoside or a derivative in coumarin biosynthesis.


1959 ◽  
Vol 37 (5) ◽  
pp. 1085-1100 ◽  
Author(s):  
A. C. Neish

A number of C14-labelled compounds were fed to detached leafy twigs of Colorado spruce (Picea pungens Engelm.), and after a metabolic period of 24 hours the pungenin was isolated and the specified activities of the glucose moiety and the aglycone (3,4-dihydroxyacetophenone) were determined. In some instances the aglycone was degraded further to determine the C14 in the methyl and carbonyl carbons separately.Caffeic acid and L-phenylalanine were the best precursors of the aglycone; cinnamic acid, p-coumaric acid, phenyllactic acid, and shikimic acid were quite good. Sodium acetate was a poor precursor, and was converted to glucose more readily than to the aglycone. Compounds found to be very poor precursors include tyrosine, 3,4-dihydroxyphenylalanine, 3-hydroxytyramine, phenylacetic acid, mandelic acid, p-hydroxyphenylpyruvic acid, p-hydroxyphenyllactic acid, p-hydroxybenzoic acid, and protocatechuic acid. Cinnamic acid-α-C14 gave 3,4-dihydroxyacetophenone labelled chiefly in the methyl group, while cinnamic acid-β-C14, L-phenylalanine-β-C14, p-coumaric acid-β-C14, and caffeic acid-β-C14 formed 3,4-dihydroxyacetophenone labelled mainly in the carbonyl carbon. It appears that a phenylethanoid compound is formed by a process involving the loss of the terminal carbon of a phenylpropanoid compound.3,4-Dihydroxyacetophenone-carbonyl-C14 was fed to spruce twigs bearing new terminal growth; up to 20% was converted to pungenin but most of it formed unidentified compounds. It was a poor precursor of lignin, compared with cinnamic acid, and a poor precursor of glutamic acid, relative to acetate.


Holzforschung ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Dharshana Padmakshan ◽  
Vitaliy I. Timokhin ◽  
Fachuang Lu ◽  
Paul F. Schatz ◽  
Ruben Vanholme ◽  
...  

Abstract Hydroxycinnamoyl shikimates were reported in 2005 to be intermediates in monolignol biosynthesis. 3-Hydroxylation of p-coumarate, originally thought to occur via coumarate 3-hydroxylase (C3H) from p-coumaric acid or its CoA thioester, was revealed to be via the action of coumaroyl shikimate 3′-hydroxylase (C3′H) utilizing p-coumaroyl shikimate as the substrate, itself derived from p-coumaroyl-CoA via hydroxycinnamoyl-CoA: shikimate hydroxycinnamoyltransferase (HCT). The same HCT was conjectured to convert the product, caffeoyl shikimate, to caffeoyl-CoA to continue on the pathway starting with its 3-O-methylation. At least in some plants, however, a more recently discovered caffeoyl shikimate esterase (CSE) enzyme hydrolyzes caffeoyl shikimate to caffeic acid from which it must again produce its CoA thioester to continue on the monolignol biosynthetic pathway. HCT and CSE are therefore monolignol biosynthetic pathway enzymes that have provided new opportunities to misregulate lignification. To facilitate studies into the action and substrate specificity of C3H/C3′H, HCT, and CSE enzymes, as well as for metabolite authentication and for enzyme characterization, including kinetics, a source of authentic substrates and products was required. A synthetic scheme starting from commercially available shikimic acid and the four key hydroxycinnamic acids (p-coumaric, caffeic, ferulic, and sinapic acid) has been developed to provide this set of hydroxycinnamoyl shikimates for researchers.


1960 ◽  
Vol 38 (1) ◽  
pp. 143-156 ◽  
Author(s):  
Stewart A. Brown ◽  
G. H. N. Towers ◽  
D. Wright

Coumarin formation has been studied with C14in the perennial grass, Hierochloë odorata, and in yellow sweet clover, Melilotus officinalis. In general the latter species yielded inconsistent data. In Hierochloë, o-coumaric, cinnamic, and shikimic acids and L-phenylalanine were the best of 10 compounds tested as coumarin precursors, the first two at least being incorporated with little randomization of C14. Acetate was more poorly utilized. It was concluded that the aromatic ring of coumarin arises via the shikimic acid pathway in preference to acetate condensation. When the time of metabolism was varied, o-coumaryl glucoside and free o-coumaric acid rapidly acquired high specific activities from cinnamic acid-C14, but coumarin and melilotic acid became active much more slowly. A lag in the acquisition of C14by coumarin for the first 6 to 8 hours was followed by a rectilinear increase until at least 24 hours. Much the greatest accumulation of C14was found in o-coumaryl glucoside during this entire period. Furthermore, this compound when fed to Hierochloë is comparable to cinnamic acid as a coumarin precursor. These findings suggest a possible function for o-coumaryl glucoside or a derivative in coumarin biosynthesis.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1142
Author(s):  
Alena Vollmannová ◽  
Janette Musilová ◽  
Judita Lidiková ◽  
Július Árvay ◽  
Marek Šnirc ◽  
...  

Common buckwheat (Fagopyrum esculentum Moench) is a valuable source of proteins, B vitamins, manganese, tryptophan, phytochemicals with an antioxidant effect, and the natural flavonoid rutin. Due to its composition, buckwheat supports the human immune system, regulates blood cholesterol, and is suitable for patients with diabetes or celiac disease. The study aimed to compare the allocation of selected phenolic acids (neochlorogenic acid, chlorogenic acid, trans-caffeic acid, trans-p-coumaric acid, trans-sinapic acid, trans-ferulic acid) and flavonoids (rutin, vitexin, quercetin, kaempferol) in the leaves, flowers, and grain of buckwheat cultivars of different origin. The content of individual phenolics was determined by the HPLC-DAD method. The results confirmed the determining role of cultivar on the relative content of chlorogenic acid, trans-caffeic acid, trans-sinapic acid, vitexin, and kaempferol in buckwheat plants. A significantly negative correlation among concentrations of phenolic acids in different common buckwheat plant parts shows that there are different mechanisms of genetic influences on the concentration of phenolic substances in common buckwheat flowers, leaves, and grain. These differences should be taken into account when breeding buckwheat for a high concentration of selected phenolic substances.


2020 ◽  
Vol 142 (2) ◽  
pp. 379-399
Author(s):  
Agnieszka Szopa ◽  
Paweł Kubica ◽  
Łukasz Komsta ◽  
Aleksandra Walkowicz-Bożek ◽  
Halina Ekiert

Abstract Agitated shoot cultures of two aronias, Aronia melanocarpa (Michx.) Elliott and Aronia arbutifolia (L.) Pers., were maintained on Murashige & Skoog medium (1 mg/l BA and 1 mg/l NAA), both with and without the addition of various biosynthetic precursors of phenolic acids and depsides (phenylalanine, cinnamic acid, benzoic acid and caffeic acid). Each substance was added in 5 concentrations (0.1–10 mmol/l), each concentration at two time points (at the beginning and on the 10th day of cultures). Twenty-four phenolic acids were determined in methanolic extracts of the biomasses collected after 20 days of growth cycles by means of HPLC method with DAD detection. The presence of seven compounds was confirmed in all the extracts—five depsides (neochlorogenic, chlorogenic, cryptochlorogenic, isochlorogenic and rosmarinic acids), and syringic and caffeic acids. The main metabolites in A. melanocarpa shoot extracts were isochlorogenic, chlorogenic and neochlorogenic acids (max. 249.88, 450.35, 192.16 mg/100 g DW). The main metabolites in A. arbutifolia shoot extracts were: chlorogenic, isochlorogenic and cryptochlorogenic acids (max. 361.60, 224.5, 526.2 mg/100 g DW). The largest total amounts of the compounds were confirmed in the cultures of both aronias after the addition of cinnamic acid (989.79 and 661.77 mg/100 g DW, respectively) and caffeic acid (854.99 and 1098.46 mg/100 g DW, respectively) at concentrations of 5 mmol/l on 10th day of growth cycles. These maximum amounts were 3.41, 3.42, 2.95 and 5.67 times higher, respectively, than in the control cultures. This is the first report documenting the high production of depsides in shoot cultures of black and red aronias after feeding with their biosynthetic precursors.


Author(s):  
Bilal Rahmoune ◽  
Izzeddine Zakarya Zerrouk ◽  
Abdelkader Morsli ◽  
Madjda Khelifi Slaoui ◽  
Lakhdar Khelifi ◽  
...  

Objective: The aim of this research was to determine and compare phenylpropanoids and fatty acids composition in two plant species, Datura innoxia and Datura stramonium.Methods: Phenylpropanoids and fatty acids composition in leaves and roots extracted from Datura innoxia and Datura stramonium, grown under greenhouse conditions, was analyzed by gas chromatography–electron impact/time of flight-mass spectrometry (GC-EI/TOF-MS) chromatography techniques. Analyses were carried out at the Max Planck Institute for Molecular Plant Physiology of Golm (Germany).Results: We revealed that Datura stramonium (DS) contains hydroxy-hexanedioic acid while hexanoic acid was found in Datura innoxia (DI). Also, two fatty acids are common to both Datura species, hexadecanoic acid and octadecanoic acid, with an almost equal rate between leaves and roots. However, phenylpropanoids composition revealed eight compounds; luteolin, quercetin, trans-caffeic acid, trans-ferulic acid, cis-caffeic acid, cis-4-hydroxy-cinnamic acid, trans-4-hydroxy-cinnamic acid and trans-sinapic acid in DI. However, in DS, five compounds were detected: luteolin, quercetin, trans-caffeic acid, trans-ferulic acid and dihydroferulic acid. Also in both Datura species, phenylpropanoids concentration in leaves was significantly higher than in the roots.Conclusion: Our results showed a difference in phenylpropanoids and fatty acids compositions between the two Datura species, with a significantly higher concentration of phenylpropanoids in Datura innoxia than in Datura stramonium


Sign in / Sign up

Export Citation Format

Share Document