Non-staining fungi associated with the bark beetle Dendroctonus brevicomis (Coleoptera: Scolytidae) on Pinus ponderosa

1972 ◽  
Vol 50 (9) ◽  
pp. 1943-1945 ◽  
Author(s):  
H. S. Whitney ◽  
F. W. Cobb Jr.

Three fungi—Ceratocystis nigrocarpa Davidson, an unidentified hyphomycete, and an unidentified basidiomycete—were isolated from extensive non-stained areas of sapwood of ponderosa pine infested with western pine beetle, Dendroctonus brevicomis Lec., in California. The two unidentified fungi were also present in the thoracic mycangium of the female beetle while C. nigrocarpa was found only externally on the beetle. The mycangium and its contents are illustrated. Ceratocystis minor (Hedgc.) Hunt, which was also found externally on the beetle but not in the mycangium, was isolated only from scattered patches of blue-stained sapwood. It is suggested that non-staining fungi play a role in causing the death of ponderosa pine trees attacked by D. brevicomis.

2008 ◽  
Vol 23 (1) ◽  
pp. 40-45 ◽  
Author(s):  
Christopher J. Fettig ◽  
Christopher P. Dabney ◽  
Stephen R. McKelvey ◽  
Dezene P.W. Huber

Abstract Nonhost angiosperm volatiles (NAV) and verbenone were tested for their ability to protect individual ponderosa pines, Pinus ponderosa Dougl. ex. Laws., from attack by western pine beetle (WPB), Dendroctonus brevicomis LeConte, and red turpentine beetle (RTB), Dendroctonus valens LeConte (Coleoptera: Curculionidae, Scolytinae). A combination of (−)-verbenone and eight NAVs [benzyl alcohol, benzaldehyde, guaiacol, nonanal, salicylaldehyde, (E)-2-hexenal, (E)-2-hexen-1-ol, and (Z)-2-hexen-1-ol] (NAVV) significantly reduced the density of WPB attacks and WPB successful attacks on attractant-baited trees. A significantly higher percentage of pitchouts (unsuccessful WPB attacks) occurred on NAVV-treated trees during two of three sample dates. In addition, significantly fewer RTB attacks were observed on NAVV-treated trees during all sampling dates. The application of NAVV to individual ponderosa pines significantly reduced tree mortality, with only 4 of 30 attractant-baited trees dying from bark beetle attack while 50% mortality (15/30) was observed in the untreated, baited control. To our knowledge, this is the first report establishing the effectiveness of NAVs and verbenone for protecting individual ponderosa pines from WPB attack.


2008 ◽  
Vol 38 (5) ◽  
pp. 924-935 ◽  
Author(s):  
Christopher J. Fettig ◽  
Robert R. Borys ◽  
Stephen R. McKelvey ◽  
Christopher P. Dabney

Mechanical thinning and the application of prescribed fire are commonly used tools in the restoration of fire-adapted forest ecosystems. However, few studies have explored their effects on subsequent amounts of bark beetle caused tree mortality in interior ponderosa pine, Pinus ponderosa Dougl. ex P. & C. Laws. var. ponderosa. In this study, we examined bark beetle responses to creation of midseral (low diversity) and late-seral stages (high diversity) and the application of prescribed fire on 12 experimental units ranging in size from 76 to 136 ha. A total of 9500 (5.0% of all trees) Pinus and Abies trees died 2 years after treatment of which 28.8% (2733 trees) was attributed to bark beetle colonization. No significant difference in the mean percentage of trees colonized by bark beetles was found between low diversity and high diversity. The application of prescribed fire resulted in significant increases in bark beetle caused tree mortality (all species) and for western pine beetle, Dendroctonus brevicomis LeConte, mountain pine beetle, Dendroctonus ponderosae Hopkins, Ips spp., and fir engraver, Scolytus ventralis LeConte, individually. Approximately 85.6% (2339 trees) of all bark beetle caused tree mortality occurred on burned split plots. The implications of these and other results to sustainable forest management are discussed.


2010 ◽  
Vol 25 (4) ◽  
pp. 181-185 ◽  
Author(s):  
Donald M. Grosman ◽  
Christopher J. Fettig ◽  
Carl L. Jorgensen ◽  
A. Steven Munson

Abstract Bark beetles (Coleoptera: Curculionidae, Scolytinae) are important tree mortality agents in western coniferous forests. Protection of individual trees from bark beetle attack has historically involved applications of liquid formulations of contact insecticides to the tree bole using hydraulic sprayers. More recently, researchers looking for more portable and environmentally safe alternatives have examined the effectiveness of injecting small quantities of systemic insecticides directly into trees. In this study, we evaluated trunk injections of experimental formulations of emamectin benzoate and fipronil for preventing tree mortality due to attack by western pine beetle (Dendroctonus brevicomis LeConte) on ponderosa pine (Pinus ponderosa Dougl. ex Laws.) in California, mountain pine beetle (Dendroctonus ponderosae Hopkins) on lodgepole pine (Pinus contorta Dougl. ex Loud.) in Idaho, and spruce beetle (D. rufipennis [Kirby]) on Engelmann spruce (Picea engelmannii Parry ex Engelm.) in Utah. Fipronil appeared ineffective for protecting P. ponderosa from mortality due to D. brevicomis over the 3 years in California because of insufficient mortality of untreated, baited control trees the first 2 years and high mortality of the fipronil-treated trees in the third year. Emamectin benzoate was effective in providing protection of P. ponderosa from D. brevicomis during the third year following a single application. To our knowledge, this is the first demonstration of the successful application of a systemic insecticide for protecting individual conifers from mortality due to bark beetle attack in the western United States. Estimates of efficacy could not be made during both field seasons in P. contorta because of insufficient mortality in control trees. Both emamectin benzoate and fipronil were ineffective for protecting P. engelmannii from D. rufipennis. Lower ambient and soil temperatures and soil moisture may have limited chemical movement and thus efficacy at the Idaho and Utah sites.


2012 ◽  
Vol 42 (12) ◽  
pp. 2022-2036 ◽  
Author(s):  
Ryan S. Davis ◽  
Sharon Hood ◽  
Barbara J. Bentz

Bark beetles can cause substantial mortality of trees that would otherwise survive fire injuries. Resin response of fire-injured northern Rocky Mountain ponderosa pine ( Pinus ponderosa Douglas ex P. Lawson & C. Lawson) and specific injuries that contribute to increased bark beetle attack susceptibility and brood production are unknown. We monitored ponderosa pine mortality and resin flow and bark beetle colonization and reproduction following a prescribed fire in Idaho and a wildfire in Montana. The level of fire-caused tree injury differed between the two sites, and the level of tree injury most susceptible to bark beetle attack and colonization also differed. Strip-attacked trees alive 3 years post-fire had lower levels of bole and crown injury than trees mass attacked and killed by bark beetles, suggesting that fire-injured trees were less well defended. Brood production of western pine beetle ( Dendroctonus brevicomis LeConte) did not differ between fire-injured and uninjured trees, although mountain pine beetle ( Dendroctonus ponderosae Hopkins) brood production was low in both tree types, potentially due to competition with faster developing bark beetle species that also colonized trees. Despite a large number of live trees remaining at both sites, bark beetle response to fire-injured trees pulsed and receded within 2 years post-fire, potentially due to a limited number of trees that could be easily colonized.


1963 ◽  
Vol 95 (10) ◽  
pp. 1112-1116 ◽  
Author(s):  
C. J. DeMars

AbstractEstimates of the numbers of the western pine beetle, Dendroctonus brevicomis LeConte, in Pinus ponderosa Laws, bark samples were made by radiographs of 25 bark samples and by dissection counts of the bark. High correlations (r = >.9) between the two methods were found for (a) live larvae, (b) live plus dead larvae, (c) live of all stages combined, and (d) live plus dead of all stages combined. The bark dissection method took eight times as long and was 4⅓ times as expensive as the radiographic interpretation method of estimating bark beetle numbers.


1984 ◽  
Vol 62 (3) ◽  
pp. 551-555 ◽  
Author(s):  
T. D. Paine

The hypersensitive response obtained by inoculating the two mycangial fungi of the western pine beetle, Dendroctonus brevicomis LeC, and the blue-stain fungus, Ceratocystis minor Hedge, into ponderosa pine was measured during three different seasons in the same 12-month period. The lesions were produced faster and were significantly longer in the fall than in the summer. Similarly, lesions were longer and were produced faster when inoculations made in the summer were compared with spring inoculations. However, the response to a nonpathogenic fungus, a Penicillium sp., was not different from the response to mycangial fungi, suggesting that lesion production is a generalized response to infection that isolates fungus-colonized tissue from the rest of the tree. Ethanol extracts of hypersensitive-response lesions produced during the spring did not reduce growth of the mycangial fungi or C. minor when bioassayed at concentrations similar to those found in host tissue. This is different from other bark beetle–host tree systems that have been investigated.


1969 ◽  
Vol 101 (2) ◽  
pp. 113-117 ◽  
Author(s):  
J. P. Vité ◽  
G. B. Pitman

AbstractDendroctonus brevicomis Lec. responded in flight to combinations of insect- and host-produced volatiles. Emergent female beetles crushed at −70 °C, as well as synthetic exo-7-ethyl-5-methyl-6, 8-dioxabicyclo [3.2.1] octane (“brevicomin”) attracted both sexes of the western pine beetle when offered with oleoresin freshly tapped from the host, Pinus ponderosa Laws. Offered separately, these materials were inactive. Crushed emergent Dendroctonus ponderosae Hopk. males per se, however, attracted flying D. brevicomis in appreciable numbers. Dominance of either host odor or insect pheromone appeared to govern the sex ratio of the responding insects.


2005 ◽  
Vol 137 (3) ◽  
pp. 367-375 ◽  
Author(s):  
Donald R. Owen ◽  
David L. Wood ◽  
John R. Parmeter

AbstractThe host-colonization behavior of the red turpentine beetle, Dendroctonus valens LeConte (Coleoptera: Scolytidae), was investigated in stands of ponderosa pine, Pinus ponderosa P. & C. Lawson (Pinaceae), with black stain root disease in the central Sierra Nevada of California. By felling live trees, we found that trees with pitch tubes produced during the initiation of tunneling by D. valens had a significantly higher incidence of black stain root disease, caused by Leptographium wageneri var. ponderosum (Harrington et Cobb), than trees without pitch tubes. Trees with the most D. valens pitch tubes had the greatest likelihood of being diseased. Additionally, observations over a 3-year period revealed that trees with D. valens pitch tubes had a significantly higher mortality rate than trees without pitch tubes. Infection by L. wageneri was confirmed for most of the trees that died, and death typically did not occur without mass attacks by the western pine beetle, D. brevicomis LeConte, and (or) the mountain pine beetle, D. ponderosae Hopkins. Trees with the most D. valens pitch tubes had the highest mortality rate. An experiment was conducted to compare the attraction of D. valens and other insects to wounded-diseased, wounded-symptomless, and unwounded trees. More D. valens, Spondylis upiformis Mannerheim (Coleoptera: Cerambycidae), and Hylastes spp. (Coleoptera: Scolytidae) were attracted to wounded trees than to unwounded trees. Catches of these beetles on wounded-diseased trees were not significantly different from catches on wounded-symptomless trees.


1971 ◽  
Vol 103 (9) ◽  
pp. 1291-1313 ◽  
Author(s):  
Cornell O. Dudley

AbstractThe distributions of attack, gallery length, eggs, and first instar larvae of an endemic population of the western pine beetle in ponderosa pine are described.Mean gallery length (GL) and larval (L) densities of mature populations are significantly correlated with attack (A) density. The associations are adequately described by the simple linear regressionsThe ratios E/GL and L/GL are stable over a wide range of gallery length densities and consequently egg-gallery length and larval-gallery length correlations are highly significant. The regression equations areAll four equations predict values within 10% of observed values.An 88 cm2 sampling unit is satisfactory for sampling either egg or first instar larval populations. Taking four paired sampling units, evenly spaced along the infested bole, from each of four trees per generation, provided a sampling precision of 15%. Increasing the number of paired units to 10 and the number of trees sampled per generation to 9 improved the precision to 10%. If the trees are sampled before oviposition is complete, the number of sampled trees per generation should be increased by 1 for each level of precision.


Sign in / Sign up

Export Citation Format

Share Document