Detection, spread, and aphid transmission of potato virus S

1974 ◽  
Vol 52 (3) ◽  
pp. 461-465 ◽  
Author(s):  
J. P. MacKinnon

Seventy-two potato tubers of 106 tested from plants exposed 1 year in a field were found infected with potato virus S (PVS) in different tests. Ninety-three percent of these were detected by tuber juice inoculation to Nicotiana debneyi Domin. and 90% by serology of 30-cm plants grown from an eye of such tubers. Sap inoculation to N. debneyi of the same young plants proved to be 96% efficient in detecting the virus, and serological tests at bloom stage were the most efficient of all the tests compared.Tests done on all tubers from 18 plants currently infected with PVS showed that 103 of 116 (89%) were infected, and virtually all eyes from 68 infected tubers produced infected plants.Three years of field trials at Fredericton on the spread of PVS showed that the virus moved into virus-free varieties independently of potato virus X (PVX). In 1970, leaf tests showed that virus-free Netted Gems became 12% infected with PVS; in 1971, spread into Green Mountain, Kennebec, and Sebago was 57, 19, and 9%, respectively; and in 1972, 14% spread occurred in Green Mountain and none in Kennebec or Sebago.Greenhouse experiments on transmission of PVS to potato by Myzus persicae (Sulz.) resulted in 3 of 87 (3.4%) plants becoming infected. Other tests with potato virus Y (PVY) to tobacco, Nicotiana tabacum L. var. Samsun, resulted in 83% transmission.

2007 ◽  
Vol 8 (1) ◽  
pp. 70 ◽  
Author(s):  
Susan J. Lambert ◽  
Frank S. Hay ◽  
Sarah J. Pethybridge ◽  
Calum R. Wilson

The spatial and temporal distribution of Potato virus S (PVS) and Potato virus X (PVX) was studied in two trials within each of four commercial fields of seed potato var. Russet Burbank in Tasmania, Australia. In the first trial (plots) 20 leaflets were collected from each of 49 plots (each approximately 8 m wide by 10 m long), with plots arranged in a 7-×-7 lattice. In the second trial (transects), leaflets were collected at 1-m intervals along seven adjacent, 50-m long rows. The mean incidence of PVS increased during the season by 5.2% in one of four plot trials and 25.5% in one of four transect trials. The mean incidence of PVX increased during the season by 10.1%, in one of two transect trials. Spatial Analysis by Distance IndicEs and ordinary runs analysis detected aggregation of PVS infected plants early in the season in one and two fields respectively, suggesting transmission during seed-cutting or during planting. An increase in PVS incidence mid- to late season in one field was associated with aggregation of PVS along, but not across rows, which may be related to the closer plant spacing within rows and hence increased potential for mechanical transmission along rows. Results suggested limited spread of PVS and PVX occurred within crops during the season. Accepted for publication 9 April 2007. Published 26 July 2007.


Plant Disease ◽  
2012 ◽  
Vol 96 (4) ◽  
pp. 592-592 ◽  
Author(s):  
M. Verbeek ◽  
A. M. Dullemans

Tomato (Solanum lycopersicum L.) plants grown in plastic greenhouses near Villa de Leyva, northeast of Bogota, Colombia showed necrotic spots on the leaves in September 2008. Initial symptoms were necrosis beginning at the base of leaflets that were surrounded by yellow areas. These symptoms resembled those described for Tomato torrado virus (ToTV; family Secoviridae, genus Torradovirus), which was first found in Spain (2). Other (tentative) members of the genus Torradovirus, Tomato marchitez virus (ToMarV), Tomato chocolate spot virus (ToChSV), and Tomato chocolàte virus (ToChV) (3) induce similar symptoms on tomato plants. One sample, coded T418, was stored in the freezer and brought to our lab in 2011. Serological tests (double-antibody sandwich-ELISA) using polyclonal antibodies (Prime Diagnostics, Wageningen, The Netherlands) on leaf extracts showed the absence of Pepino mosaic virus (PepMV), Tobacco mosaic virus (TMV), Tomato spotted wilt virus (TSWV), Cucumber mosaic virus (CMV), Potato virus X (PVX), and Potato virus Y (PVY). Leaf extracts were mechanically inoculated onto the indicator plants Physalis floridana, Nicotiana hesperis ‘67A’, and N. occidentalis ‘P1’ (six plants in total) and were kept in a greenhouse at 20°C with 16 h of light. Necrotic symptoms appeared 4 to 5 days postinoculation and resembled those described for ToTV (2). Two dip preparations of systemically infected P. floridana and N. occidentalis leaves were examined by electron microscopy, which revealed the presence of spherical virus particles of approximately 30 nm. To confirm the presence of ToTV, total RNA was extracted from the original leaf material and an inoculated P. floridana and N. occidentalis plant using the Qiagen Plant Mini Kit (Qiagen, Hilden, Germany) following manufacturer's instructions. ToTV-specific primer sets ToTV-Dp33F/ToTV-Dp20R (5′-TGCTCAATGTTGGAAACCCC-3′/5′-AGCCCTTCATAGGCTAGCC-3′, amplifying a fragment of the RNA1 polyprotein with an expected size of 751 bp) and ToTV-Dp1F/ToTV-Dp2R (5′-ACAAGAGGAGCTTGACGAGG-3′/5′-AAAGGTAGTGTAATGGTCGG-3′, amplifying a fragment on the RNA2 movement protein region with an expected size of 568 bp) were used to amplify the indicated regions in a reverse transcription (RT)-PCR using the One-Step Access RT-PCR system (Promega, Madison, WI). Amplicons of the predicted size were obtained in all tested materials. The PCR products were purified with the Qiaquick PCR Purification Kit (Qiagen) and sequenced directly. BLAST analyses of the obtained sequences (GenBank Accession Nos. JQ314230 and JQ314229) confirmed the identity of isolate T418 as ToTV, with 99% identity to isolate PRI-ToTV0301 in both fragments (GenBank Accession Nos. DQ388879 and DQ388880 for RNA1 and RNA 2, respectively). To our knowledge, this is the first report of ToTV in Colombia, and interestingly, since ToTV has been found only in Europe and Australia (1) so far, this is the first report of ToTV on the American continent. References: (1) C. F. Gambley et al. Plant Dis. 94:486, 2010. (2) M. Verbeek et al. Arch. Virol. 152:881, 2007. (3) M. Verbeek et al. Arch. Virol. 155:751, 2010.


1993 ◽  
Vol 74 (7) ◽  
pp. 1245-1253 ◽  
Author(s):  
D. C. Baulcombe ◽  
J. Lloyd ◽  
I. N. Manoussopoulos ◽  
I. M. Roberts ◽  
B. D. Harrison

2012 ◽  
Vol 60 (3) ◽  
pp. 283-298 ◽  
Author(s):  
R. Ahmadvand ◽  
A. Takács ◽  
J. Taller ◽  
I. Wolf ◽  
Z. Polgár

Potato (Solanum tuberosum L.) is the fourth most important food crop in the world. It is the most economically valuable and well-known member of the plant family Solanaceae. Potato is the host of many pathogens, including fungi, bacteria, Phytoplasmas, viruses, viroids and nematodes, which cause reductions in the quantity and quality of yield. Apart from the late blight fungus [Phytophthora infestans (Mont.) de Bary] viruses are the most important pathogens, with over 40 viruses and virus-like pathogens infecting cultivated potatoes in the field, among which Potato virus Y (PVY), Potato leaf roll virus (PLRV), Potato virus X (PVX), Potato virus A (PVA), Potato virus S (PVS) and Potato virus M (PVM) are some of the most important viruses in the world. In this review, their characteristics and types of resistance to them will be discussed.


2011 ◽  
Vol 26 (2) ◽  
pp. 117-127
Author(s):  
Jelena Zindovic

The research was carried out, in the period 2002-2004 in order to determine the presence and distribution of potato viruses at 12 different locations and on 9 different potato varieties grown in Montenegro. The research included collecting of samples in seed potato crops and testing of six economically important potato viruses: Potato leaf roll virus (PLRV), Potato virus Y (PVY), Potato virus X (PVX), Potato virus S (PVS), Potato virus A (PVA) i Potato virus M (PVM). Using the direct enzyme-linked immunosorbent assay (DAS-ELISA) and commercial antisera specific for six potato viruses, it was found that PVY was the most frequent virus during the three-year research period. The second frequent virus was PVS, followed by PVA, PLRV, PVM and PVX. Single and mixed infections were detected, and the most prevalent were the single infections of PVY. Also, in the period 2002-2004, PVY had the highest distribution and the number of present viruses was different at different localities and on different potato varieties. Further investigations were related to detailed characterization of the most prevalent virus (PVY), which is at the same time economically the most important one. Serological characterization of PVY was performed utilizing DAS-ELISA kit with commercial monoclonal antibodies specific for detection of the three strain groups of PVY, and the two strain groups - necrotic (PVYN/PVYNTN) and common (PVYO), were identified. Necrotic strains were prevalent in 2002 and 2004, while in 2003 PVYO was the most frequent strain in virus population. The presence of stipple streak strain (PVYC) was not detected in any of the tested samples.


2014 ◽  
Vol 58 (4) ◽  
pp. 783-787 ◽  
Author(s):  
N. Cerovska ◽  
H. Plchova ◽  
P. Vaculik ◽  
T. Moravec ◽  
T. Gichner

Sign in / Sign up

Export Citation Format

Share Document