The synaptonemal complexes of Achlya recurva (Oomycetes): karyotype analysis and three-dimensional reconstruction of pachytene nuclei in antheridia and oogonia

1991 ◽  
Vol 69 (6) ◽  
pp. 1384-1395 ◽  
Author(s):  
Hobart R. Williamson ◽  
Pesach Ben Yitzchak

Fifteen synaptonemal complexes, as determined by three-dimensional reconstruction of serial, ultrathin sections, were present within both antheridial and oogonial zygotene and pachytene nuclei of the oomyceteous fungus Achlya recurva, thus n = 15. The present study represents the first complete reconstruction of synaptonemal complexes in the genus Achlya. The occurrence of both zygonema and pachynema was simultaneous in antheridia and oogonia. Pachytene nuclei of antheridia and oogonia are small, 13 μm3 in volume, and the average length of the synaptonemal complexes ranged from 1.9 to 4.4 μm. Lateral elements at zygotene ranged from 1.2 to 4.7 μm. Both ends of each synaptonemal complex were attached randomly to the nuclear envelope, so a bouquet formation was not observed at pachytene. In A. recurva, the dimensions of the synaptonemal complex were as follows: overall width = 270 nm; the lateral elements = 75 nm each in width and the central region = 120 nm. There was no central element and associated transverse filaments, which may be associated with development of alternative reproductive strategies other than amphimixis, as in nematodes. Of the 15 synaptonemal complexes present, only the one carrying the nucleolus organizer region could be clearly identified from one nucleus to the next. The nucleolar organizer region was on the average 0.75 μm from the telomere in both zygotene and pachytene nuclei. There were an average of three recombination nodules in each nucleus. Synaptonemal complexes have been reported in over 80 different species of fungi and related protista. Karyotypic evolution in the oomycetes and fungi may be the result of poly-ploidization, followed by cytogenetic diversification involving aneuploidy and differing degrees of polyploidy. Such a sequence of events could explain the apparent polyphyletic formation of this group. Key words: karyotype, Oomycetes, pachytene, synaptonemal complexes, three-dimensional reconstruction.

Author(s):  
Jennifer C. Fung ◽  
David A. Agard ◽  
John W. Sedat

The synaptonemal complex (SC) is a key macromolecular assembly formed during meiosis of most eukaryotes. It has a crucial role in maintaining synapsis between homologous chromosomes and in ensuring proper segregation of the homologs through the establishment of functional chiasmata. Recently, biochemical and genetic efforts have begun to identify some of the protein components of the SC. As these efforts progress, a more detailed analysis of SC structure will also be needed to incorporate these new components into the overall organization of the SC.Early efforts into the analysis of SC structure have established that its general architecture is conserved throughout many organisms. The basic features found in every SC are the two lateral elements and the central element, both which run longitudinally between the homologs during the pachytene stage of prophase I. Transverse elements which run perpendicular to the homolog axis through the central region are also often found. Although the general features of the SC are conserved, the internal architecture of these components can differ.


Author(s):  
Jennifer C. Fung ◽  
Bethe A. Scalettar ◽  
David A. Agard ◽  
John W. Sedat

The synaptonemal complex (SC) is a structure involved in the synapsis of homologous chromosomes during the prophase I stage of meiosis. Although the exact function of the complex is unknown, it has been suggested that one possible role might be to promote recombination by ensuring close synapsis of the homologous chromosomes. In addition, it is thought that the SC may also be required to convert the resulting recombination events into functional chiasmata to provide for proper chromosome segregation at the end of the first stage of meiosis.The SC structure itself is highly conserved across a variety of species. The organization of the SC is tripartite consisting of lateral, central and transverse elements. Two-dimensional cytological observations have been made to characterize the general features of these SC components. The lateral elements are 300 - 500 Å wide proteinaceous structures which flank the synapsed regions of the chromosome bivalent. Between the two lateral elements is a central region containing the central element commonly characterized as a less dense amorphous structure.


Author(s):  
J. Frank ◽  
B. F. McEwen ◽  
M. Radermacher ◽  
C. L. Rieder

The tomographic reconstruction from multiple projections of cellular components, within a thick section, offers a way of visualizing and quantifying their three-dimensional (3D) structure. However, asymmetric objects require as many views from the widest tilt range as possible; otherwise the reconstruction may be uninterpretable. Even if not for geometric obstructions, the increasing pathway of electrons, as the tilt angle is increased, poses the ultimate upper limitation to the projection range. With the maximum tilt angle being fixed, the only way to improve the faithfulness of the reconstruction is by changing the mode of the tilting from single-axis to conical; a point within the object projected with a tilt angle of 60° and a full 360° azimuthal range is then reconstructed as a slightly elliptic (axis ratio 1.2 : 1) sphere.


Author(s):  
Nicolas Boisset ◽  
Jean-Christophe Taveau ◽  
Jean Lamy ◽  
Terence Wagenknecht ◽  
Michael Radermacher ◽  
...  

Hemocyanin, the respiratory pigment of the scorpion Androctonus australis is composed of 24 kidney shaped subunits. A model of architecture supported by many indirect arguments has been deduced from electron microscopy (EM) and immuno-EM. To ascertain, the disposition of the subunits within the oligomer, the 24mer was submitted to three-dimensional reconstruction by the method of single-exposure random-conical tilt series.A sample of native hemocyanin, prepared with the double layer negative staining technique, was observed by transmisson electron microscopy under low-dose conditions. Six 3D-reconstructions were carried out indenpendently from top, side and 45°views. The results are composed of solid-body surface representations, and slices extracted from the reconstruction volume.The main two characters of the molecule previously reported by Van Heel and Frank, were constantly found in the solid-body surface representations. These features are the presence of two different faces called flip and flop and a rocking of the molecule around an axis passing through diagonnally opposed hexamers. Furthermore, in the solid-body surface of the top view reconstruction, the positions and orientations of the bridges connecting the half molecules were found in excellent agreement with those predicted by the model.


Author(s):  
J.L. Carrascosa ◽  
G. Abella ◽  
S. Marco ◽  
M. Muyal ◽  
J.M. Carazo

Chaperonins are a class of proteins characterized by their role as morphogenetic factors. They trantsiently interact with the structural components of certain biological aggregates (viruses, enzymes etc), promoting their correct folding, assembly and, eventually transport. The groEL factor from E. coli is a conspicuous member of the chaperonins, as it promotes the assembly and morphogenesis of bacterial oligomers and/viral structures.We have studied groEL-like factors from two different bacteria:E. coli and B.subtilis. These factors share common morphological features , showing two different views: one is 6-fold, while the other shows 7 morphological units. There is also a correlation between the presence of a dominant 6-fold view and the fact of both bacteria been grown at low temperature (32°C), while the 7-fold is the main view at higher temperatures (42°C). As the two-dimensional projections of groEL were difficult to interprete, we studied their three-dimensional reconstruction by the random conical tilt series method from negatively stained particles.


2006 ◽  
Vol 175 (4S) ◽  
pp. 82-82
Author(s):  
Gustavo Ayala ◽  
Rile Li ◽  
Hong Oai ◽  
Mohammad Sayeeddudin ◽  
Timothy C. Thompson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document