Enhanced susceptibility to apoptosis and growth arrest of human breast carcinoma cells treated with silica nanoparticles loaded with monohydroxy flavone compounds

2019 ◽  
Vol 97 (5) ◽  
pp. 513-525
Author(s):  
Nagwa Abo El-Maali ◽  
Gamal Badr ◽  
Douaa Sayed ◽  
Randa Adam ◽  
Gamal Abd El Wahab

The treatment of drug-resistant cancer is a clinical challenge, hence screening for novel anticancer drugs is critically important. In this study, we investigated the anti-tumor potential of three plant-derived flavone compounds: 3-hydroxy flavone (3-HF), 6-hydroxy flavone (6-HF), and 7-hydroxy flavone (7-HF), either alone or combined with silica nanoparticles (3-HF + NP, 6-HF + NP, and 7-HF + NP), on the human breast carcinoma cell lines MDA-MB-231 and MCF-7, as well as on non-tumorigenic normal breast epithelial cells (MCF-10). The IC50values of these flavone compounds loaded with NP (flavones + NP) in these cell lines were determined to be 1.5 μg/mL without affecting the viability of normal MCF-10 cells. Additionally, using annexin V – propidium iodide double-staining followed by flow cytometry analysis, we found that the combination of flavones with NP significantly induced apoptosis in MCF-7 and MDA-MB-231 cancer cells. Furthermore, flavones + NP increased the expression of cytochrome c and caspase-9, mediating the growth arrest of these cancer cells. Most importantly, the combination of flavones with NP significantly abolished the expression of ATF-3, which is responsible for the proliferation and invasion of bone-metastatic breast cancer cells. Our data revealed the potential therapeutic effects of these flavones in fighting breast cancer cells, and provide the first insights concerning the underlying molecular mechanisms.

2006 ◽  
Vol 24 (18_suppl) ◽  
pp. 13100-13100
Author(s):  
L. Witters ◽  
A. Witkoski ◽  
M. Planas-Silva ◽  
J. Viallet ◽  
M. S. Berger ◽  
...  

13100 Background: The epidermal growth factor receptor (EGFR; ErbB1) and HER-2/neu (ErbB2), members of the ErbB family of receptor tyrosine kinases, are overexpressed in a variety of human tumors and overexpression generally correlates with poor prognosis and decreased survival. Use of inhibitors of these receptors as monotherapies, e.g., trastuzumab, Iressa, and erlotinib, has led to advances in treatment, but many patients do not respond or develop resistance. The anti-apoptotic protein, Bcl-2, is also overexpressed in a number of human tumors. Inhibitors of Bcl-2 induce apoptosis and sensitize cancer cells to other therapies. This study assesses the effects of a combination of a reversible inhibitor of both EGFR and HER-2/neu that is similar to lapatinib (GW2974) and a pan inhibitor of the Bcl-2 family (GX15–070: Gemin X Biotechnologies, Inc.) on the growth of human breast cancer cells. Methods: The MCF-7 human breast cancer cell line transfected with a control vector, MCF/neo, and the HER-2/neu transfected MCF-7 cell line, MCF/18, were treated with various concentrations of GW2974 (0.25–10 μM) and/or the GX15–070 pan Bcl-2 inhibitor (50–500 nM). After a 3 day exposure, cell number was determined using the colorimetric MTT tetrazolium dye assay. Percent of control was normalized to corresponding concentrations of the solvent for both agents (DMSO). Results: Treatment with the GW2974 dual inhibitor or the GX15–070 pan Bcl-2 inhibitor resulted in dose-dependent growth inhibition in both the control and HER-2/neu transfected MCF-7 cell lines. The combination of both agents produced synergistic growth inhibition in both cell lines as confirmed by isobologram analysis. Conclusions: This study has demonstrated synergy with the combination of a dual inhibitor of EGFR and HER-2/neu and an inhibitor of Bcl-2 in control and HER-2/neu overexpressing MCF-7 human breast cancer cells. This finding warrants an evaluation of this combination in clinical trials for the treatment of patients with metastatic breast cancer. [Table: see text]


2015 ◽  
Vol 33 (28_suppl) ◽  
pp. 135-135
Author(s):  
Ye-Won Jeon ◽  
Youngjin Suh

135 Background: The anti-cancer effects of celecoxib and luteolin are well known. Although our previous study demonstrated that the combination of celecoxib and luteolin synergistically inhibits breast tumor growth compared with each of the treatments alone, we did not uncover the molecular mechanisms of these effects. The aims of our present study were to compare the effects of a celecoxib and luteolin combination treatment in four different human breast cell lines and to determine the mechanisms of action in vitro and in vivo. Methods: Using MCF-7, MCF7/HER18, MDA-MB-231 and SkBr3 human breast cancer cells, proliferation assay, apoptosis assay, inhibition assay with MEK and PI3K inhibitor in addition to western blotting and xenograft study after treatment with celecoxib and luteolin. Results: The synergistic effects of a celecoxib and luteolin combination treatment yielded significantly greater cell growth inhibition in all four breast cancer cell lines compared with the single agents alone. In particular, combined celecoxib and luteolin treatment significantly decreased the growth of MDA-MB-231 cancer cells in vivo compared with either agent alone. The celecoxib and luteolin combination treatment induced synergistic effects via Akt inactivation and extracellular signal-regulated kinase (ERK) signaling inhibition in MCF-7 and MCF7/HER18 cells and via Akt inactivation and ERK signaling activation in MDA-MB-231 and SkBr3 cells. Conclusions: These results demonstrate the synergistic anti-tumor effect of the celecoxib and luteolin combination treatment in different four breast cancer cell lines, thus introducing the possibility of this combination as a new treatment modality.


2018 ◽  
Vol 154 ◽  
pp. 04003
Author(s):  
Jamilah Abbas ◽  
Linar Z Udin ◽  
Muhammad Hanafi

Objective: to evaluated the antiproliferative activity of natural coumarin from Calophyllum incrasaptum M.R Henderson-Wytt Smith against human breast cancer cells MCF-7. Methode : Coumarin from ethyl acetate fraction of C. incrasaptum M.R Henderson-Wyatt Smith was isolated by coloumn chromatographyic and structure elucidated by using spectroscopic methods and isolate compound was evaluated for their antiproliferative activities in the alamar blue assay. Result: Coumarin have antiproliferative activity against MCF-7 cancer cell lines through alamar blue assay for 4 h after treatment. Conclusions: coumarin showed good activity against cancer cell lines with IC50 value of 2.23 μg/mL.


2016 ◽  
Vol 52 (20) ◽  
pp. 3959-3961 ◽  
Author(s):  
Yuan Li ◽  
Yulong Zhang ◽  
Man Zhao ◽  
Qianqian Zhou ◽  
Lili Wang ◽  
...  

Herein, we describe a novel approach for the rapid diagnosis of human breast carcinoma MCF-7 cells with a detection limit of 100 cells mL−1.


2017 ◽  
Vol 44 (5) ◽  
pp. 1775-1784 ◽  
Author(s):  
Shuangxi Li ◽  
Yafei Wang ◽  
Chan Feng ◽  
Guoli Wu ◽  
Yu Ye ◽  
...  

Background/Aims: Calycosin, a phytoestrogenic compound, has recently emerged as a promising antitumor drug. It has been shown that calycosin suppresses growth and induces apoptosis of breast cancer cells. However, the effect of calycosin on migration and invasion of breast cancer cells and the underlying molecular mechanisms have not been elucidated. Methods: Human breast cancer cells MCF-7 and T47D were treated with, or without, different doses (0, 6.25, 12.5, 25, 50, 100 or 150 μM) of calycosin, and the viability of different groups was determined by MTT assay. Next, the inhibitory effect of higher doses (50, 100 or 150 μM) of calycosin on migration and invasion of the two cell lines was determined by wound healing and transwell assay. The relative expression levels of forkhead box P3 (Foxp3), vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP-9) in MCF-7 and T47D cells were determined by quantitative RT-PCR and Western blot. Results: Treatment with lower doses (6.25 or 12.5 μM) promoted proliferation of breast cancer cells, but with higher doses significantly reduced the viability of MCF-7 and T47D cells. Furthermore, higher doses of calycosin were found to inhibit migration and invasion of the two cell lines in a dose-dependent manner. Additionally, treatment with a higher dose of calycosin significantly reduced the expression levels of Foxp3, followed by down-regulation of VEGF and MMP-9 in both MCF-7 and T47D breast cancer cells. Conclusion: Treatment with a higher dose of calycosin tends to reduce migration and invasion capacity of human breast cancer cells, by targeting Foxp3-mediated VEGF and MMP-9 expression.


2016 ◽  
Vol 38 (1) ◽  
pp. 26-30 ◽  
Author(s):  
V F Chehkun ◽  
T Borikun ◽  
N Yu Lukianova

Aim: To analyze expression of miRNA in human breast cancer cells, sensitive and resistant to cisplatin and doxorubicin, and to explore possible modification of drug sensitivity via treatment of cells with 5-azacytidine (5-aza), a demethylating agent. Materials and Methods: The study was performed on wild-type MCF-7 cell line (MCF-7/S) and its two sublines MCF-7/Dox and MCF-7/DDP resistant to doxorubicin and cisplatin, respectively. Cells were treated with 5-aza, cisplatin, doxorubicin and their combinations. Relative expression levels of miRNA-221, -200b, -320a, -10b, -34a, -122 and -29b were examined, using qRT-PCR. The MTT assay was used to monitor cell viability. Results: We compared miRNA expression profiles in MCF-7/S and drug resistant MCF-7/Dox and MCF-7/DDP cells. Changes of miRNA-221, -200b, -320a, -10b, -34a, -122 and -29b were observed in both resistant cell lines. The most significant differences were found for miRNA-200b (decreased in 50.0 ± 2.6 and 63.0 ± 3.1 times for MCF-7/Dox and MCF7/DDP cells, respectively) and for oncogenic miRNA-221 levels (increase in 62.0 ± 5.7 times for MCF-7/Dox and 83.8 ± 7.2 times for MCF-7/DDP cells). 5-aza treatment caused an increase of miRNA-10b, -122, -200b levels in MCF-7/S cells, miRNA-34a, -10b, -122, -200b and -320a levels in MCF-7/Dox cells and miRNA-34a, -10b, -200b and -320a levels in MCF-7/DDP cells. Pretreatment of all studied lines with 5-aza resulted in the increase of their sensitivity to studied cytostatics. In particular, the IC50 of doxorubicin decreased by 2-, 4- and 3-fold for cell lines MCF-7/S, MCF-7/Dox and MCF-7/DDP cells, respectively, and IC50 of cisplatin in studied cultures decreased by 3-, 2- and 1.5-fold, respectively. Conclusions: It was shown that use of 5-aza can modify sensitivity of breast cancer cells to cytotoxic drugs not only by it’s demetylation effect, but also by changes in expression of miRNAs, involved in cell proliferation, migration and drug resistance development.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 242
Author(s):  
Diana Tavares-Valente ◽  
Bárbara Sousa ◽  
Fernando Schmitt ◽  
Fátima Baltazar ◽  
Odília Queirós

The reverse pH gradient is a major feature associated with cancer cell reprogrammed metabolism. This phenotype is supported by increased activity of pH regulators like ATPases, carbonic anhydrases (CAs), monocarboxylate transporters (MCTs) and sodium–proton exchangers (NHEs) that induce an acidic tumor microenvironment, responsible for the cancer acid-resistant phenotype. In this work, we analyzed the expression of these pH regulators and explored their inhibition in breast cancer cells as a strategy to enhance the sensitivity to chemotherapy. Expression of the different pH regulators was evaluated by immunofluorescence and Western blot in two breast cancer cell lines (MDA-MB-231 and MCF-7) and by immunohistochemistry in human breast cancer tissues. Cell viability, migration and invasion were evaluated upon exposure to the pH regulator inhibitors (PRIs) concanamycin-A, cariporide, acetazolamide and cyano-4-hydroxycinnamate. Additionally, PRIs were combined with doxorubicin to analyze the effect of cell pH dynamic disruption on doxorubicin sensitivity. Both cancer cell lines expressed all pH regulators, except for MCT1 and CAXII, only expressed in MCF-7 cells. There was higher plasma membrane expression of the pH regulators in human breast cancer tissues than in normal breast epithelium. Additionally, pH regulator expression was significantly associated with different molecular subtypes of breast cancer. pH regulator inhibition decreased cancer cell aggressiveness, with a higher effect in MDA-MB-231. A synergistic inhibitory effect was observed when PRIs were combined with doxorubicin in the breast cancer cell line viability. Our results support proton dynamic disruption as a breast cancer antitumor strategy and the use of PRIs to boost the activity of conventional therapy.


Sign in / Sign up

Export Citation Format

Share Document