scholarly journals Effect of fine particles on the hydraulic behavior of interlayer soil in railway substructure

2014 ◽  
Vol 51 (7) ◽  
pp. 735-746 ◽  
Author(s):  
Trong Vinh Duong ◽  
Yu-Jun Cui ◽  
Anh Minh Tang ◽  
Jean-Claude Dupla ◽  
Nicolas Calon

The conventional railway substructure in France was built by emplacing ballast directly on subgrade. Over years of operation, the interpenetration of ballast and subgrade created a soil layer between them. Under different conditions, this naturally formed layer, namely interlayer, can contain different quantities of fine particles, becoming more or less sensitive to changes in water content. As the water content changes are governed by the hydraulic behavior of the interlayer soil, assessing the influence of fine particle content on the hydraulic behavior of interlayer soil is of importance. To this end, the hydraulic behavior of an interlayer soil taken from Sénissiat (near Lyon, France) was investigated using two infiltration columns, a large-scale column equipped with tensiometers and a time domain reflectometer (TDR) for suction and volumetric water content measurements, respectively, and a smaller column equipped with high-capacity tensiometers only. Different fines contents were considered and wetting–drying cycles were applied to the soil specimens. The hydraulic conductivity was determined by applying the instantaneous profile method. The results obtained showed that (i) hysteresis exists for both the soil water retention curve and the hydraulic conductivity changes with suction; (ii) the effect of wetting–drying cycles is insignificant; (iii) adding 10% fine particles to the natural interlayer soil gives rise to changes in the soil water retention curve but does not induce significant changes in hydraulic conductivity; (iv) the unsaturated hydraulic conductivity of interlayer soil with 10% fine particles added is close to that of soil sieved at 2 mm, suggesting that the unsaturated hydraulic conductivity of interlayer soil is mainly governed by fine particles through the suction effect. By contrast, in a saturated state, the value for the interlayer soil with 10% fine particles added was found to be higher, suggesting that in this case the hydraulic conductivity is mainly governed by the water transfer through macropores.

2020 ◽  
Vol 195 ◽  
pp. 01004
Author(s):  
Ali Kolahdooz ◽  
Hamed Sadeghi ◽  
Mohammad Mehdi Ahmadi

Dispersive soils, as one of the main categories of problematic soils, can be found in some parts of the earth, such as the eastern-south of Iran, nearby the Gulf of Oman. One of the most important factors enhancing the dispersive potential is the existence of dissolved salts in the soil water. The main objective of this study is to explore the influence of water salinity on the instability of a railway embankment due to rainfall infiltration. In order to achieve this goal, the embankment resting on a dispersive stratum is numerically modeled and subjected to transient infiltration flow. The effect of dispersion is simplified through variations in the soil-water retention curve with salinity. The measured water retention curves revealed that by omitting the natural salinity in the soil-water, the retention capability of the soil decreases; therefore, the unsaturated hydraulic conductivity of the soil stratum will significantly decline. According to the extensive decrease in the hydraulic conductivity of the desalinated materials, the rainfall cannot infiltrate in the embankment and the rainfall mostly runs off. However, in the saline embankment, the infiltration decreases the soil suction; and consequently, the factor of safety of the railway embankment decreases.


2020 ◽  
Author(s):  
Zampela Pittaki-Chrysodonta ◽  
Per Moldrup ◽  
Bo V. Iversen ◽  
Maria Knadel ◽  
Lis W. de Jonge

<p>The soil water retention curve (SWRC) at the wet part is important for understanding and modeling the water flow and solute transport in the vadose zone. However, direct measurements of SWRC is often laborious and time consuming processes. The Campbell function is a simple method to fit the measured data. The parameters of the Campbell function have been recently proven that can be predicted using visible-near-infrared spectroscopy. However, predicting the SWRC using image spectral data could be an inexpensive and fast method. In this study, 100-cm<sup>3</sup> soil samples from Denmark were included and the soil water content was measured at a soil-water matric potential from pF 1 [log(10)= pF 1] up to pF 3. The anchored Campbell soil-water retention function was selected instead of the original. Specifically, in this function the equation is anchored at the soil-water content at pF 3 (θ<sub>pF3</sub>) instead at the saturated water content. The image spectral data were correlated with the Campbell parameters [θ<sub>pF3</sub>, and the pore size distribution index (Campbell b). The results showed the potential of remote sensing to be used as a fast and alternative method for predicting the SWRC in a large-scale.</p>


2020 ◽  
Author(s):  
Seboong Oh ◽  
Sungjin Kim ◽  
Kwang Ik Son

<p>In unsaturated soils, the soil water retention curve (SWRC) is most important in the fundamental hydraulic properties. In order to measure SWRCs through an alternative method in Korea, high air entry disks were replaced by micro membranes. Micro membranes are thin in which the air entry value is around 100kPa. Tests with the membrane are fast to reduce the duration of infiltration through the high air entry disk.</p><p>The water retention curves using the membrane were compared with the data using high air entry disks from the volumetric pressure plate extractor and Tempe pressure cell for samples of various sites. As a result, the SWRCs using the membrane were very similar for most cases and the micro membrane was verified as a useful tool to measure SWRCs.</p><p>The unsaturated hydraulic behavior could be measured easily using the membrane than ceramic disks and the huge amount of data could have been obtained in Korea. Using DB of SWRCs, the hydraulic properties were interpreted based on the parameters of the van Genuchten SWRC model. The void ratio and density are correlated to SWRCs under the same classification soil.</p><p><strong>Acknowledgements</strong> This research is supported by grant from Korean NRF (2019R1A2C1003604) and MOE (79608), which are greatly appreciated.</p>


Sign in / Sign up

Export Citation Format

Share Document