scholarly journals Determination of the Soil Water Retention Curve and the Unsaturated Hydraulic Conductivity from the Particle Size Distribution

Author(s):  
Alexander Scheuermann ◽  
Andreas Bieberstein
2018 ◽  
Vol 22 (9) ◽  
pp. 4621-4632
Author(s):  
Chen-Chao Chang ◽  
Dong-Hui Cheng

Abstract. Traditional models employed to predict the soil water retention curve (SWRC) from the particle size distribution (PSD) always underestimate the water content in the dry range of the SWRC. Using the measured physical parameters of 48 soil samples from the UNSODA unsaturated soil hydraulic property database, these errors were proven to originate from an inaccurate estimation of the pore size distribution. A method was therefore proposed to improve the estimation of the water content at high suction heads using a pore model comprising a circle-shaped central pore connected to slit-shaped spaces. In this model, the pore volume fraction of the minimum pore diameter range and the corresponding water content were accordingly increased. The predicted SWRCs using the improved method reasonably approximated the measured SWRCs, which were more accurate than those obtained using the traditional method and the scaling approach in the dry range of the SWRC.


2011 ◽  
Vol 34 (5) ◽  
pp. 103590
Author(s):  
L. D. Suits ◽  
T. C. Sheahan ◽  
Rodrigo Martins Reis ◽  
Wagner Nogueira Sterck ◽  
Artur Bastos Ribeiro ◽  
...  

2014 ◽  
Vol 51 (7) ◽  
pp. 735-746 ◽  
Author(s):  
Trong Vinh Duong ◽  
Yu-Jun Cui ◽  
Anh Minh Tang ◽  
Jean-Claude Dupla ◽  
Nicolas Calon

The conventional railway substructure in France was built by emplacing ballast directly on subgrade. Over years of operation, the interpenetration of ballast and subgrade created a soil layer between them. Under different conditions, this naturally formed layer, namely interlayer, can contain different quantities of fine particles, becoming more or less sensitive to changes in water content. As the water content changes are governed by the hydraulic behavior of the interlayer soil, assessing the influence of fine particle content on the hydraulic behavior of interlayer soil is of importance. To this end, the hydraulic behavior of an interlayer soil taken from Sénissiat (near Lyon, France) was investigated using two infiltration columns, a large-scale column equipped with tensiometers and a time domain reflectometer (TDR) for suction and volumetric water content measurements, respectively, and a smaller column equipped with high-capacity tensiometers only. Different fines contents were considered and wetting–drying cycles were applied to the soil specimens. The hydraulic conductivity was determined by applying the instantaneous profile method. The results obtained showed that (i) hysteresis exists for both the soil water retention curve and the hydraulic conductivity changes with suction; (ii) the effect of wetting–drying cycles is insignificant; (iii) adding 10% fine particles to the natural interlayer soil gives rise to changes in the soil water retention curve but does not induce significant changes in hydraulic conductivity; (iv) the unsaturated hydraulic conductivity of interlayer soil with 10% fine particles added is close to that of soil sieved at 2 mm, suggesting that the unsaturated hydraulic conductivity of interlayer soil is mainly governed by fine particles through the suction effect. By contrast, in a saturated state, the value for the interlayer soil with 10% fine particles added was found to be higher, suggesting that in this case the hydraulic conductivity is mainly governed by the water transfer through macropores.


2020 ◽  
Vol 195 ◽  
pp. 01004
Author(s):  
Ali Kolahdooz ◽  
Hamed Sadeghi ◽  
Mohammad Mehdi Ahmadi

Dispersive soils, as one of the main categories of problematic soils, can be found in some parts of the earth, such as the eastern-south of Iran, nearby the Gulf of Oman. One of the most important factors enhancing the dispersive potential is the existence of dissolved salts in the soil water. The main objective of this study is to explore the influence of water salinity on the instability of a railway embankment due to rainfall infiltration. In order to achieve this goal, the embankment resting on a dispersive stratum is numerically modeled and subjected to transient infiltration flow. The effect of dispersion is simplified through variations in the soil-water retention curve with salinity. The measured water retention curves revealed that by omitting the natural salinity in the soil-water, the retention capability of the soil decreases; therefore, the unsaturated hydraulic conductivity of the soil stratum will significantly decline. According to the extensive decrease in the hydraulic conductivity of the desalinated materials, the rainfall cannot infiltrate in the embankment and the rainfall mostly runs off. However, in the saline embankment, the infiltration decreases the soil suction; and consequently, the factor of safety of the railway embankment decreases.


Sign in / Sign up

Export Citation Format

Share Document