Effects of fines on liquefaction behaviour in well-graded materials

2017 ◽  
Vol 54 (10) ◽  
pp. 1460-1471 ◽  
Author(s):  
Katherine A. Kwa ◽  
David W. Airey

This study uses a critical state soil mechanics perspective to understand the mechanics behind the liquefaction of metallic ores during transport by ship. These metallic ores are transported at relatively low densities and have variable gradings containing a wide range of particle sizes and fines contents. The effect of the fines content on the location of the critical state line (CSL) and the cyclic liquefaction behaviour of well-graded materials was investigated by performing saturated, standard drained and undrained monotonic and compression-only cyclic triaxial tests. Samples were prepared at four different gradings containing particle sizes from 9.5 mm to 2 μm with fines (<75 μm) contents of 18%, 28%, 40%, and 60%. In the e versus log[Formula: see text] plane, where e is void ratio and [Formula: see text] is mean effective stress, the CSLs shifted upwards approximately parallel to one another as the fines content was increased. Transitional soil behaviour was observed in samples containing 28%, 40%, and 60% fines. A sample’s cyclic resistance to liquefaction depended on a combination of its density and state parameter, which were both related to the fines content. Samples with the same densities were more resistant to cyclic failure if they contained higher fines contents. The state parameter provided a useful prediction for general behavioural trends of all fines contents studied.

1999 ◽  
Vol 36 (4) ◽  
pp. 599-611 ◽  
Author(s):  
Xiang-Song Li ◽  
Yannis F Dafalias ◽  
Zhi-Liang Wang

A bounding-surface hypoplasticity model is modified to incorporate the basic premises of critical-state soil mechanics and cover both dense and loose sand behavior. The modification consists of rendering the phase-transformation line a function of the state parameter, which measures the difference between the current and critical void ratios at the same value of p, such that when the state parameter is zero, the phase-transformation line becomes identical to the critical-state line in q-p space. As a result the dilatancy depends on the state in a way that yields a zero value at critical state. This dependence allows a realistic modelling of the response of a sand in either loose or dense state, or in the transition from one state to another state. A comparison between model simulations and a sequence of experimental results for drained, undrained, monotonic, and cyclic loading conditions shows that the proposed concept and modelling technique work effectively over a wide range of densities and confining pressures using a unique set of parameters (or parameter dependence) for a given sand.Key words: bounding surface, critical state, dilatancy, phase transformation, soil plasticity, state parameter.


Author(s):  
Jeremy Tan ◽  
Rolando P. Orense ◽  
Andy O’Sullivan

The majority of current procedures used to deduce liquefaction potential of soils rely on empirical methods. These methods have been proven to work in the past, but these methods are known to overestimate the liquefaction potential in certain regions of Christchurch due to a whole range of factors, and the theoretical basis behind these methods cannot be explained scientifically. Critical state soil mechanics theory was chosen to provide an explanation for the soil’s behaviour during the undrained shearing. Soils from two sites in Christchurch were characterised at regular intervals for the critical layers and tested for the critical state lines (CSL). Various models and relationships were then used to predict the CSL and compared with the actual CSL. However none of the methods used managed to predict the CSL accurately, and a separate Christchurch exclusive relationship was proposed. The resultant state parameter values could be obtained from shear-wave velocity plots and were then developed into cyclic resistance ratios (CRR). These were subsequently compared with cyclic stress ratios (CSR) from recent Christchurch earthquakes to obtain the factor of safety. This CSL-based approach was compared with other empirical methods and was shown to yield a favourable relationship with visual observations at the sites’ locations following the earthquake.


Geotechnics ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 95-127
Author(s):  
António Viana da Fonseca ◽  
Diana Cordeiro ◽  
Fausto Molina-Gómez

The critical state theory is a robust conceptual framework for the characterisation of soil behaviour. In the laboratory, triaxial tests are used to assess the critical state locus. In the last decades, the equipment and testing procedures for soil characterisation, within the critical state framework, have advanced to obtain accurate and reliable results. This review paper summarises and describes a series of recommended laboratory procedures to assess the critical state locus in cohesionless soils. For this purpose, results obtained in the laboratory from different cohesionless soils and triaxial equipment configurations are compiled, analysed and discussed in detail. The procedures presented in this paper reinforce the use of triaxial cells with lubricated end platens and an embedded connection piston into the top-cap, together with the verification of the full saturation condition and the measurement end-of-test water content—preferable using the soil freezing technique. The experimental evidence and comparison between equipment configurations provide relevant insights about the laboratory procedures for obtaining a reliable characterisation of the critical state locus of cohesionless geomaterials. All the procedures recommended herein can be easily implemented in academic and commercial geotechnical laboratories.


2016 ◽  
Vol 837 ◽  
pp. 68-74
Author(s):  
Rafal Uliniarz

The paper presents a reasonably advanced constitutive law for soil – a hybrid of the Modified Cam Clay and a new RU development. The Modified Cam Clay model is an isotropic hardening elasto – plastic model originated by Burland in 1967 [1] within the critical state soil mechanics. This model describes realistically mechanical soil behaviour in normal consolidation states. The other one is designed to ensure more adequate soil responses to reloading paths, particularly in the range of small strains. The RU+MCC model has been implemented in the FEM computer code Z_SOIL.pc. To test the influence of the small strain nonlinearity on soil – structure interaction as well as to exhibit the ability of the proposed model to simulate realistically this effect, a comparative study based on the FEM solution has been carried out. As a benchmark a trial loading test of strip footing was used.


2009 ◽  
Vol 46 (3) ◽  
pp. 281-295 ◽  
Author(s):  
D. C. Bobei ◽  
S. R. Lo ◽  
D. Wanatowski ◽  
C. T. Gnanendran ◽  
M. M. Rahman

An experimental study was carried out to investigate the static liquefaction behaviour of sand with a small amount of plastic and nonplastic fines. Five series of tests were conducted in drained and undrained conditions. The drained test results indicate not only that the failure line coincides with the critical state, but also that the development of volumetric strain during shearing was not sensitive to the initial confining pressure. In both isotropically and anisotropically consolidated undrained tests, a so-called “reverse behaviour” was consistently observed. The results were also interpreted in the critical state framework. The critical and steady state (CS/SS) data were found to trace along the same curve in e–log( p′) space, irrespective of the stress history and effective stress paths. A comparison between the isotropic consolidation line (ICL) and critical state (CS) curve showed that a small amount of fines can significantly change the shape and position of the ICL relative to the CS curve. Furthermore, the soil behaviour manifested in both drained and undrained shearing led to the development of a modified state parameter.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Xin Wei ◽  
Chongyang Gao ◽  
Keyu Ai ◽  
Jun Zhao ◽  
Ling Xu

The coal fly ash (CFA) is massively produced as a consequence of coal source residues in Northern Shaanxi Province, China. Since disposing the waste materials in mountainous gully widely distributed in the same area is one of the possibilities, the high compressibility and low strength of CFA become a severe problem for the stacking. The aeolian fine sands are close to Mu Us Desert, as the addition material was introduced to improve the mechanical behaviours of CFA. A series of oedometer and triaxial tests were performed on pure CFA, pure sands, and their mixtures containing 25%, 50%, and 80% of sands by weight, respectively. Test results were analyzed within the framework of critical state soil mechanics. With increasing sands content, normally consolidated lines (NCLs) and critical state lines (CSLs) of tested materials change in volume space as well as their compression or shearing paths. The mechanical parameters like C c , Г, λ decrease as a result of increasing sands content. On the contrary, the M and ∅ c s ' increase with augmenting sands content. It is concluded that the aeolian sands can significantly decrease the compressibility of the CFA and increase its shear strength. These findings would be useful for the treatment of CFA, which is significant for solving environmental problems in northern Shaanxi Province.


2013 ◽  
Vol 50 (10) ◽  
pp. 1067-1076 ◽  
Author(s):  
Abouzar Sadrekarimi

Critical-state soil mechanics is a useful framework to understand sand behavior. In this paper, a relationship is developed for estimating undrained critical shear strength of sands based on the critical-state framework. The application of this relationship is demonstrated by comparison with laboratory test results and sand liquefied strength from field liquefaction flow failure case histories. Using this relationship, the effects of effective stress variation and density on undrained critical shear strength are studied for different combinations of critical-state line parameters corresponding to several reference sands. The parametric study indicates that depending on sand void ratio, undrained critical shear strength may increase, remain the same or decrease as sand shearing–compressibility (represented by the slope of the critical-state line) increases. The underlying mechanisms of field failures in dense sands and reverse behavior of compressible sands are explained through this relationship. It is suggested that the critical-state parameter alone is insufficient for describing the behavior of liquefiable sands and sand shearing–compressibility should be also taken into account for estimating undrained shear strength corresponding to the changes in density and effective confining stress.


Sign in / Sign up

Export Citation Format

Share Document