Framework to assess pseudo-static approach for seismic stability of clayey slopes

2018 ◽  
Vol 55 (12) ◽  
pp. 1860-1876 ◽  
Author(s):  
Mourad Karray ◽  
Mahmoud N. Hussien ◽  
Marie-Christine Delisle ◽  
Catherine Ledoux

Approaches commonly used to assess the seismic stability of slopes range from the relatively simple pseudo-static method to more complicated nonlinear numerical methods, e.g., finite element (FE) and finite difference (FD). The pseudo-static method, in particular, is widely used in practice as it is inexpensive and substantially less time consuming compared to the much more rigorous numerical methods. However, the pseudo-static method is widely criticized because it does not take into account the effects of the earthquake on the shear strength of the slope material nor the seismic response of the slope. Hence, some researchers recommend its use only in slopes composed of cohesive materials that do not develop significant pore pressures or that lose less than about 15% of their peak shear strength during earthquake shaking. However, the use of the pseudo-static method in these soils is also problematic as clayey slopes generally fail in pseudo-static stability analyses (i.e., factors of safety are less than 1) and the failure surface is completely predominated by the thickness of the clayey layer in the slope or foundation. The reliability of the pseudo-static method in natural clayey slopes is examined here based on rigorous numerical simulations with FLAC. The numerical results are compared and verified using available static and dynamic 1g laboratory tests. This article then addresses some of the crude assumptions of the pseudo-static method and provides practical suggestions to be applied to refine the outcomes of pseudo-static analyses not only in terms of the computed safety factors, but also in the prediction of the failure surface through the consideration of additional aspects of the dynamic responses of the clayey slopes.

1979 ◽  
Vol 16 (1) ◽  
pp. 19-33 ◽  
Author(s):  
Tien H. Wu ◽  
William P. McKinnell III ◽  
Douglas N. Swanston

The stability of slopes before and after removal of forest cover was investigated. Porewater pressures and shear strengths were measured and the soil properties were determined by laboratory and in situ tests. A model of the soil–root system was developed to evaluate the contribution of tree roots to shear strength. The computed safety factors are in general agreement with observed behaviors of the slopes. Decay of tree roots subsequent to logging was found to cause a reduction in the shear strength of the soil–root system.


2007 ◽  
Vol 353-358 ◽  
pp. 2732-2735 ◽  
Author(s):  
Li Hong Chen ◽  
Jian Yang ◽  
You Ren Yuan ◽  
Tao Sun

Linear and nonlinear shear strength models of rockfill, and the safety factor criterion of nonlinear shear strength were discussed in this paper. The slope stability of 261.5 m high Nuozhadu rockfill dam was analyzed with three different shear strength models. The safety factors are almost equal and the positions of potential failure surface are similar. It is found that the allowable safety factor base on linear criterion in the existing code can be used without any change when applying nonlinear shear strength rules.


Author(s):  
Javad Vaze Mobaraki ◽  

The safety factor for slopes (FS) is traditionally determined using two-dimensional limit equilibrium (LEM) methods, however, the safety factor of a slope can also be calculated by FLAC software with the technique of reducing soil shear strength in the time stages until the slope fails. In this presentation, we first describe the numerical methods of stability analysis, finite difference method and FLAC software, and then we analyze the static stability using FLAC software.


2020 ◽  
Vol 68 (1) ◽  
pp. 48-58
Author(s):  
Chao Liu ◽  
Zongde Fang ◽  
Fang Guo ◽  
Long Xiang ◽  
Yabin Guan ◽  
...  

Presented in this study is investigation of dynamic behavior of a helical gear reduction by experimental and numerical methods. A closed-loop test rig is designed to measure vibrations of the example system, and the basic principle as well as relevant signal processing method is introduced. A hybrid user-defined element model is established to predict relative vibration acceleration at the gear mesh in a direction normal to contact surfaces. The other two numerical models are also constructed by lumped mass method and contact FEM to compare with the previous model in terms of dynamic responses of the system. First, the experiment data demonstrate that the loaded transmission error calculated by LTCA method is generally acceptable and that the assumption ignoring the tooth backlash is valid under the conditions of large loads. Second, under the common operating conditions, the system vibrations obtained by the experimental and numerical methods primarily occur at the first fourth-order meshing frequencies and that the maximum vibration amplitude, for each method, appears on the fourth-order meshing frequency. Moreover, root-mean-square (RMS) value of the acceleration increases with the increasing loads. Finally, according to the comparison of the simulation results, the variation tendencies of the RMS value along with input rotational speed agree well and that the frequencies where the resonances occur keep coincident generally. With summaries of merit and demerit, application of each numerical method is suggested for dynamic analysis of cylindrical gear system, which aids designers for desirable dynamic behavior of the system and better solutions to engineering problems.


2021 ◽  
Author(s):  
Pengfei Dou ◽  
Chengshun Xu ◽  
Xiuli Du ◽  
Su Chen

Abstract In previous major earthquakes, the damage and collapse of structures located in liquefied field which caused by site failure a common occurrence, and the problem of evaluation and disscusion on site liquefaction and the seismic stability is still a key topic in geotechnical earthquake engineering. To study the influence of the presence of structure on the seismic stability of liquefiable sites, a series of shaking table tests on liquefiable free field and non-free field with the same soil sample was carried out. It can be summarized from experimental results as following. The natural frequency of non-free field is larger and the damping ratio is smaller than that of free field. For the weak seismic loading condition, the dynamic response of sites show similar rules and trend. For the strong ground motion condition, soils in both experiments all liquefied obviously and the depth of liquefaction soil in the free field is significantly greater than that in the non-free field, besides, porewater pressure in the non-free field accumulated relately slow and the dissapited quikly from analysis of porewater pressure ratios(PPRs) in both experiments. The amplitudes of lateral displacements and acceleration of soil in the non-free field is obviously smaller than that in the free field caused by the effect of presence of the structure. In a word, the presence of structures will lead to the increase of site stiffness, site more difficult to liquefy, and the seismic stability of the non-free site is higher than that of the free site due to soil-structure interaction.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Pan Chen ◽  
Changfu Wei ◽  
Jie Liu ◽  
Tiantian Ma

A theoretical model is developed for describing the strength property of unsaturated soils. The model is able to predict conveniently the strength changes of unsaturated soils undergoing repeated changes of water content. Suction stress is adopted in the new model in order to get the sound form of effective stress for unsaturated soils. The shear strength of unsaturated soils is dependent on its soil-moisture state based on the results of shear experiments. Hence, the parameters of this model are related tightly to hydraulic properties of unsaturated soils and the strength parameters of saturated soils. The predictive curves by the new model are coincident with experimental data that underwent single drying and drying/wetting cycle paths. Hence, hysteretic effect in the strength analysis is necessary to be considered to predict the change of shear strength of unsaturated soils that underwent drying/wetting cycles. Once the new model is used to predict the change of shear strength, lots of time could be saved due to avoiding heavy and complicated strength tests of unsaturated soils. Especially, the model can be suitable to evaluate the shear strength change of unsaturated soils and the stability of slopes experienced the drying/wetting cycles.


Sign in / Sign up

Export Citation Format

Share Document