suction stress
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 17)

H-INDEX

13
(FIVE YEARS 2)

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Jun Feng ◽  
Guangze Zhang

For the unsaturated soil in Feidong China, this study examined the suction stress characteristics based on the soil-water characteristic curve (SWCC), which was different from traditional research ideas. At the same time, the unsaturated consolidation device was adopted for SWCC tests, with consideration of the influence of yielding stress of soil, which was different from the traditional test approach of the soil-water characteristic curve. The results were estimated using the van Genuchten model, which was revealed that this is well-fit for the studied unsaturated soil, and the triaxial shear-strength tests were conducted with suction control. Then, the suction stress characteristic curve (SSCC) was analyzed, and SWCC-predicted data were compared with triaxial test-derived suction stress data. For the studied unsaturated soil, the deviatoric stress increased with the net inner stress p − u a at the same matric suction. At the same net inner pressure, the deviatoric stress increased with the matric suction, which verified the hardening activity of matric suction on the tested unsaturated soil strength. Besides, triaxial test-derived suction stress data greatly conformed to SWCC data-derived SSCC that was determined using identical parameters used in the SWCC model.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1809
Author(s):  
Yongpeng Nie ◽  
Wankui Ni ◽  
Xiangning Li ◽  
Haiman Wang ◽  
Kangze Yuan ◽  
...  

To better understand and analyze the unsaturated stability of loess filling body, it is necessary to study the changes in suction stress before and after the drying-wetting cycles. In this study, the SWCC of compacted loess before and after drying-wetting cycles was tested using the filter paper method. Then, the suction stress was calculated and the microstructure of the loess sample was determined by the SEM and NMR. The results showed that the drying-wetting cycles had an important influence on the SSCC and microstructure of compacted loess. The change in suction stress before and after the drying-wetting cycles can be well explained by the loess microstructure. The drying-wetting cycles did not significantly change the basic trend of the compacted loess’s SSCC, but it increased the porosity and the dominant pore diameter of loess, and reduced the suction stress under the same matric suction. The main significant change in suction stress with matric suction occurred within the range of the dominant soil pores. The larger the dominant pore diameter, the smaller the suction stress under the same matric suction. In addition, this study proposes a new method for calculating suction stress based on the PSD parameters.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3040
Author(s):  
Young-Suk Song ◽  
Byung-Gon Chae ◽  
Kyeong-Su Kim ◽  
Joon-Young Park ◽  
Hyun-Joo Oh ◽  
...  

This study describes the development of a landslide monitoring system for the purpose of reducing damages caused by landslides in natural terrain. The system was developed to analyze the effects of landslide-inducing rainfall and the behavior of slopes through 12 monitoring stations that are distributed across eight national parks in Korea. Several sensors and a data acquisition equipment to monitor landslide were installed in each station. The composition of the system and its operating program were designed to efficiently manage the sizeable amounts of real-time monitoring data that are collected from the various stations. To test the potential of the developed system for reliable landslide hazard evaluations, data measured over a five-year period by the two monitoring stations in Jirisan National Park were analyzed. Subsequently, the suction stress of the soil over the monitoring period was calculated by applying laboratory test result of the geotechnical and unsaturated soil properties in the analysis domain area. The infinite slope stability analysis combined with an effective stress concept based on the suction stress was applied to calculate the factor of safety. This method also enabled the temporal and quantitative evaluation of slope stability in natural terrain. In addition, based on the monitoring and slope stability analysis results, an analysis for the spatial classification of landslide hazards was conducted. The analysis results quantitatively and statistically demonstrated that 98% of historical landslide initiation areas were classified as high hazard levels.


2021 ◽  
Author(s):  
Yongpeng Nie ◽  
Wan kui Ni ◽  
Xiangning Li ◽  
Haiman Wang ◽  
Kangze Yuan ◽  
...  

Abstract In order to better understand and analyze the unsaturated stability of loess fillings, it is necessary to study the changes in suction stress before and after the drying-wetting cycles. In this study, the soil-water characteristic curve (SWCC) of compacted loess before and after drying-wetting cycles was tested using the filter paper method. Then, the suction stress was calculated and the microstructure of the loess sample was determined by the scanning electron microscope(SEM)and nuclear magnetic resonance (NMR). The results showed that the drying-wetting cycles had an important influence on the suction stress characteristic curve (SSCC) and microstructure of compacted loess. The change in suction stress before and after the drying-wetting cycles can be explained by the loess microstructure. The drying-wetting cycles did not significantly change the basic trend of the compacted loess's suction stress, but it increased the porosity and the diameter of the dominant pore (i.e., the inter-aggregate pore) of the sample, and reduced the suction stress when the same matrix suction was applied. The main significant change in suction stress with matrix suction occurred within the range of the dominant soil pores. The larger the diameter of the dominant pore, the smaller the suction stress under the same matrix suction. In addition, this study also proposes a new method for calculating suction stress based on the pore size distribution(PSD) parameters, which is more convenient than traditional calculation methods based on SWCC parameters.


Author(s):  
J. Ramírez Jiménez ◽  
J. M. Horta Rangel ◽  
M. L. Pérez Rea ◽  
E. Rojas González ◽  
T. Lopez Lara ◽  
...  

Aims: To develop a flow-moisture model that allows determining the variation of suction over time, as well as the suction stresses, using the finite element method in a two-dimensional model of unsaturated soil through an analogy with a transient thermal problem. Study Design: The variables used in this study were soil suction, hydraulic conductivity, diffusivity and degree of saturation which was represented as the  parameter of the Bishop’s effective stress equation. Place and Duration of Study: Graduate Engineering Department, Universidad Autónoma de Querétaro, between November 2019 and August 2020. Methodology: To establish the model, experimental Soil-Water Retention Curve was taken from Galaviz (2016). With this information, the curves of hydraulic conductivity and diffusivity were calculated with the methods of Fredlund et al. (2012) and Li (1996). In ANSYS 19.2, an analogous transient thermal analysis was run to determine suction changes over time in a 12 x 2.4 meters two-dimensional medium with an impermeable membrane at the center of its surface which was 4.8 meters long. Through these suction changes, the hydraulic hysteresis algorithm presented by Zhou et al. (2012) was used to calculate the respective degrees of saturation, which were considered as the  parameter to obtain the suction stresses. Results: The changes in soil suction, degree of saturation and suction stress were properly modeled. Conclusion: When considering the hydraulic hysteresis cycles, both spatial and temporal variations behaved in a similar way in the  parameters as well as in the suction stresses. Such stresses depended on the analysis period, increasing in the dry season, according to the precipitation-evapotranspiration model, and decreasing in the wetting season. A time lag was observed between the maximum and minimum stresses as greater depths were studied. Along the horizontal axis, considering the same depth, the stresses varied more in the areas adjacent to the impermeable membrane, while at the center this variation was practically null.


2020 ◽  
Vol 57 (10) ◽  
pp. 1439-1452 ◽  
Author(s):  
Emad Maleksaeedi ◽  
Mathieu Nuth

The suction stress characteristic framework is a practical approach for relating the suction and the water-filled pore volume to the stress state of unsaturated soils. It predicts the effective stress by developing the suction stress characteristic curve from the soil-water retention curve. In this framework, the effective degree of saturation is usually calculated by the empirical water retention model of van Genuchten (published in 1980). In this paper, the use of a generalized soil-water retention model proposed by Lu in 2016, which differentiates the role of capillary and adsorption mechanisms, in the suction stress characteristic framework is studied. A redefinition of the effective degree of saturation is suggested, by choosing the retention state where capillarity approaches zero instead of the residual retention state. The validity of this assumption is examined using experimental data obtained by unsaturated shear strength and retention tests and datasets collected from the literature. The proposed definition is applicable for a variety of soils where capillarity is the dominant mechanism in producing suction stress within the range of suction 0–1500 kPa. In addition, it is observed that the generalized soil-water retention model presents a more realistic prediction of unsaturated shear strength compared with empirical water retention models.


2020 ◽  
Vol 20 (7) ◽  
pp. 04020077
Author(s):  
Ujwalkumar D. Patil ◽  
Laureano R. Hoyos ◽  
Anand J. Puppala ◽  
Surya Sarat Chandra Congress

Sign in / Sign up

Export Citation Format

Share Document