Field Axial Loading Tests of Screw Micropiles in Sand

Author(s):  
Mujtaba Khidri ◽  
Lijun Deng

A screw micropile consists of a smooth shaft at the top, threaded shaft at the middle and tapered shaft at the bottom. Research is required to investigate the axial behavior and capacities of this pile type in sand. A field load test program was performed on six types of full-scale screw micropiles installed at a sandpit site using torque. Selected piles were instrumented with axial strain gauges. A geotechnical investigation, including cone penetration tests (CPT) and standard penetration tests, was undertaken. In total, 41 piles, including 8 instrumented piles, were tested. The ultimate capacities and the unit shaft resistance distributions were determined. The shaft resistance was then compared with the tip resistance of CPT. The coefficient of lateral earth pressure and combined shaft resistance factor was determined for each pile segment, and then an effective stress method based on the combined shaft resistance factor was used to estimate the capacity of test piles. A theoretical torque model was developed using CPT sleeve friction; the model was verified by comparing the estimated torque to the measured torque of test piles. In the end, empirical torque factors were developed.

2012 ◽  
Vol 45 ◽  
pp. 74-82 ◽  
Author(s):  
Mohammad Hassan Baziar ◽  
Armin Kashkooli ◽  
Alireza Saeedi-Azizkandi

Author(s):  
Meen-Wah Gui ◽  
Dong-Sheng Jeng

The application of cavity expansion theory in the back estimation of cone penetration tests conducted in calibration chambers has been carried out by many researchers. However, the theory is seldom employed by centrifuge modelers. Based on the work of spherical cavity expansion of previous researchers, this study proposed an analytical solution that incorporates the effects of cone geometry and surface roughness and the effect of compressibility to estimate the cone tip resistance. The calculated results are compared with the measured cone penetration resistance of four cone penetration tests performed in the centrifuge. The cone penetration tests were conducted in granular soil specimens having relative densities ranging between 54% and 89%. The comparison demonstrates the capacity of the cavity expansion theory in the prediction of the centrifuge cone penetration resistance.


2011 ◽  
Vol 48 (4) ◽  
pp. 599-615 ◽  
Author(s):  
Mourad Karray ◽  
Guy Lefebvre ◽  
Yannic Ethier ◽  
Annick Bigras

The construction of the Péribonka dam involved deep compaction of its foundation using vibroflotation and dynamic compaction. Surface wave testing was used, in addition to classical tests (cone penetration tests (CPTs) and standard penetration tests (SPTs)) for the assessment of vibrocompaction. More than 900 shear wave velocity (Vs) and 1000 CPT profiles were obtained. This set of tests performed prior to and following vibrocompaction constitutes an important data bank, used in this study to establish a relationship between normalized shear wave velocity, Vs1, normalized tip resistance, qc1, and mean grain size, D50. Using the Péribonka project data obtained on fairly coarse sands in conjunction with the Canadian Liquefaction Experiment (CANLEX) project data obtained on fine sands has confirmed the significant effect of particle-size distribution on the relationship between Vs and qc. The paper proposes a correlation between Vs1, qc1, and D50 for uncemented and Holocene-age granular soils in continuity with the relation developed by Wride et al. from the CANLEX project.


2001 ◽  
Vol 38 (3) ◽  
pp. 592-607 ◽  
Author(s):  
K M Lee

The reclamation for the new airport at Chek Lap Kok in Hong Kong included the placement of a substantial volume of sand fill by various hydraulic placement techniques, which resulted in a wide range of as-placed densities of the sand fill. This paper described the use of cone penetration tests (CPT) on the evaluation of the possible ranges of density achievable by various hydraulic placement methods adopted in the construction of the new airport. The results of the CPT indicated that the placement technique is one of the most important factors in controlling the as-placed density of hydraulically placed sand fill. There is a marked contrast in cone tip resistance (and the associated relative density) profiles for the sand fills formed by subaerial and subaqueous placement methods, in which the cone tip resistance of the sand fill formed by subaerial placement is substantially higher than that of the sand fill formed by subaequeous placement. The results confirm that dense sand fill cannot be formed by subaqueous placement methods. The weakest zone is generally located just beneath the water level where fill is placed by subaqueous discharge.Key words: sand, hydraulic fill, cone penetration test, calibration chamber test, in situ density.


2002 ◽  
Vol 39 (3) ◽  
pp. 695-709 ◽  
Author(s):  
K Rainer Massarsch ◽  
Bengt H Fellenius

The variation of the coefficient of earth pressure in normally consolidated and overconsolidated soil and the effect of soil compaction on the change of the horizontal effective stress are discussed based on cone penetration test (CPT) data. A method is outlined for estimating the increase in the effective earth pressure based on sleeve friction measurements. Soil compaction increases not only soil density, but also horizontal effective stress. Since the cone stress is influenced by the vertical and horizontal effective stress, particularly at shallow depths, the cone stress needs to be adjusted for effective mean stress. A relation is presented for determining the soil compressibility from the adjusted cone stress. A case history is presented where a 10 m thick sand fill was compacted using vibratory compaction. Cone penetration tests indicated a significant increase in cone stress and sleeve friction and a decrease in compressibility (increase in modulus number) due to compaction. The friction ratio was unchanged. It was concluded that the earth pressure about doubled corresponding to an increase in the overconsolidation ratio of at least 5. The results of settlement calculations based on the Janbu method demonstrate the importance of considering the preconsolidation effect in the analyses.Key words: sand, CPTU, vibratory compaction, earth pressure, overconsolidation, modulus number, settlement.


1989 ◽  
Vol 26 (4) ◽  
pp. 742-744 ◽  
Author(s):  
R. C. Joshi ◽  
H. D. Sharma ◽  
D. G. Sparrow

Instrumented model piles were loaded to failure using slow-maintained-load, quick-maintained-load, and constant-rate-of-penetration methods of loading. The piles were driven in a prepared dry-sand bed. The applied load, point load, and shaft resistance were measured using load cells and strain gauges, and axial force distribution was determined. Test data indicate that all the three methods give similar ultimate load at failure. Nonetheless, out of the three methods, the slow-maintained-load method of testing piles, which seems to simulate field conditions, gives the largest settlement for the same applied load. The axial force distribution and shaft resistance along the pile were observed to be identical for all the three pile test methods. Key words: model piles, laboratory study, axial loading, test methods, sands, point load, shaft resistance, ultimate load.


Author(s):  
Anamitra Roy ◽  
Shiaohuey Chow ◽  
Conleth O’Loughlin ◽  
Mark Randolph

Abstract The paper investigates the effect of stress history and shallow embedment on centrifuge cone penetration tests in sand. A series of centrifuge cone penetration tests were performed in loose and dense silica sand at g-levels ranging between 20 and 100 with corresponding overconsolidation ratio (OCR) between 1 and 5. Based on the measured cone tip resistance (qc) profiles, improved empirical correlations have been proposed with depth factors (fD) to impart additional flexibility in accurately back predicting sand relative density (RD) at shallow embedment in normally consolidated (NC) sands. The qc - RD correlations are then extended to capture overconsolidation effects in cone tip resistance, which is broadly consistent with the changes in compressibility and in-situ lateral stresses taking place in sands with increasing OCR levels. The proposed expressions allow accurate quantification of depth corrected CPT profiles in soils of varying overconsolidation ratio, for application in the interpretation of model tests on shallow foundations and anchors and in shallowly buried structures such as pipelines. The expressions also have application for interpretation of field CPT profiles where the thickness of interbedded layers is of similar order of magnitude to the cone diameter.


2012 ◽  
Vol 594-597 ◽  
pp. 527-531
Author(s):  
Wan Qing Zhou ◽  
Shun Pei Ouyang

Based on the experimental study of rotary filling piles with large diameter subjected to axial load in deep soft soil, the bearing capacity behavior and load transfer mechanism were discussed. Results show that in deep soft soil foundation, the super–long piles behave as end-bearing frictional piles. The exertion of the shaft resistance is not synchronized. The upper layer of soil is exerted prior to the lower part of soil. Meanwhile, the exertion of shaft resistance is prior to the tip resistance. For the different soil and the different depth of the same layer of soil, shaft resistance is different.


1985 ◽  
Vol 22 (4) ◽  
pp. 592-599
Author(s):  
R. G. Horvath

A multiple loading testing method is suggested, which permits testing a single drilled pier foundation under three different conditions of load support. The pier may be tested under conditions of combined shaft and end-bearing resistance, end-bearing resistance only, and shaft resistance only. The advantages of this multiple loading test method include observation of the load-transfer and displacement behaviours of the pier under these three different support conditions and verification of the values obtained for the components of load support, i.e., shaft and end-bearing resistance, all from a single test pier.A special base load cell capable of performing a different function during each cycle of loading is required. A suitable load cell, consisting of a series of Freyssi flatjacks, and the method of operation are described.A multiple loading test procedure was used successfully as part of a field investigation program on full-scale pier sockets in weak shale. Data on the load-displacement behaviour of the pier tested using the multiple loading method are reported. Information concerning piers tested using conventional single loading methods are provided for comparison.The multiple loading test results were in good agreement with results obtained from conventional testing methods. Thus the multiple loading test method provides an economical means of obtaining a large amount of design information for drilled pier foundation systems, using a single test pier. Key words: field load test, multiple loading, drilled piers and caissons, shaft resistance, end-bearing resistance, combined shaft and end-bearing resistances, base load cell, shale.


Sign in / Sign up

Export Citation Format

Share Document