Abundant genetic diversity and maternal origins of modern horses

2019 ◽  
Vol 99 (4) ◽  
pp. 929-934
Author(s):  
Hongzhao Lu ◽  
Hao Bai ◽  
Ling Wang ◽  
Tao Zhang

To clarify the origin and genetic diversity of modern horses, mitochondrial DNA (mtDNA) D-loop sequences were generated for 3965 horses from 12 geographical regions. From these sequences, we observed 439 haplotypes defined by 138 polymorphic nucleotide sites. All horses were genetically diverse (HD = 0.973 ± 0.001, π = 0.0243 ± 0.0005), which showed that maternal lineages of the domestic horse are worldwide highly diverse. In general, all 18 haplogroups were presented in the Asian horse. The majority of modern horse sequences belong to haplogroups L, Q, and A. At the same time, 194 archaeological samples from four geographical regions were obtained. Indeed, haplogroup distributions are overlapping in modern and ancient samples, indicating that most haplogroups were already present in ancient times at least in Europe and Asia. The network showed that breeds of Asian and Europe regions overlapped, suggesting that extensive gene flow had occurred between different horse breeds in Asian and European regions.

Genetika ◽  
2015 ◽  
Vol 47 (3) ◽  
pp. 1051-1062 ◽  
Author(s):  
Gorcin Cvijanovic ◽  
Tanja Adnadjevic ◽  
Mirjana Lenhardt ◽  
Sasa Maric

Poor regulated fishery, pollution, fragmentation and loss of habitat are most important factors influencing decline of sterlet population worldwide. In Middle and Lower Danube region, this species still have significant economic importance since wilde populations are commercially exploited, while Upper Danube populations are dependent on stocking efforts in order to maintain their presence in open waters. Aim of present study is to analyze genetic diversity of sterlet populations from the Middle and Lower Danube and Lower Tisza rivers, as a prerequisite for their effective conservation and management. Analysis of a highly variable D-loop fragment of mitochondrial DNA detected five new haplotypes, while the eight previously identified haplotypes had extended their previous range. Genetic variability could be attributed almost entirely to individuals, with observed lack of population structure. Negative values of neutrality test indicate recent expansion on some sampling locations. Adittionaly, gene flow analysis between Lower and Middle Danube region showed intensive exchange of speciemens. At the same time analysis showed some influence of Tisza dam on gene flow between samples from Tisza and Middle Danube section.Our study indicated the need for a careful planning of sterlet stocking programmes and inclusion of demographic data or catch time-series.


2021 ◽  
Vol 8 (5) ◽  
pp. 210125
Author(s):  
Mataab K. Al-Ghafri ◽  
Patrick J. C. White ◽  
Robert A. Briers ◽  
Kara L. Dicks ◽  
Alex Ball ◽  
...  

The Nubian ibex ( Capra nubiana ) is patchily distributed across parts of Africa and Arabia. In Oman, it is one of the few free-ranging wild mammals found in the central and southern regions. Its population is declining due to habitat degradation, human expansion, poaching and fragmentation. Here, we investigated the population's genetic diversity using mitochondrial DNA (D-loop 186 bp and cytochrome b 487 bp). We found that the Nubian ibex in the southern region of Oman was more diverse (D-loop HD; 0.838) compared with the central region (0.511) and gene flow between them was restricted. We compared the genetic profiles of wild Nubian ibex from Oman with captive ibex. A Bayesian phylogenetic tree showed that wild Nubian ibex form a distinct clade independent from captive animals. This divergence was supported by high mean distances (D-loop 0.126, cytochrome b 0.0528) and high F ST statistics (D-loop 0.725, cytochrome b 0.968). These results indicate that captive ibex are highly unlikely to have originated from the wild population in Oman and the considerable divergence suggests that the wild population in Oman should be treated as a distinct taxonomic unit. Further nuclear genetic work will be required to fully elucidate the degree of global taxonomic divergence of Nubian ibex populations.


2014 ◽  
Vol 76 (11) ◽  
pp. 1451-1456 ◽  
Author(s):  
Masaki TAKASU ◽  
Namiko ISHIHARA ◽  
Teruaki TOZAKI ◽  
Hironaga KAKOI ◽  
Masami MAEDA ◽  
...  

Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 155
Author(s):  
Kefena Effa ◽  
Sonia Rosenbom ◽  
Jianlin Han ◽  
Tadelle Dessie ◽  
Albano Beja-Pereira

Matrilineal genetic diversity and relationship were investigated among eight morphologically identified native Ethiopian horse populations using polymorphisms in 46 mtDNA D-loop sequences (454 base pairs). The horse populations identified were Abyssinian, Bale, Borana, Horro, Kafa, Kundido feral horses, Ogaden and Selale. Mitochondrial DNA D-loop sequences were characterized by 15 variable sites that defined five different haplotypes. All genetic diversity estimates, including Reynolds’ linearized genetic distance, genetic differentiation (FST) and nucleotide sequence divergence (DA), revealed a low genetic differentiation in native Ethiopian horse populations. However, Kundido feral and Borana domestic horses were slightly diverged from the rest of the Ethiopian horse populations. We also tried to shed some light on the matrilineal genetic root of native Ethiopian horses from a network constructed by combining newly generated haplotypes and reference haplotypes deposited in the GenBank for Eurasian type Turkish Anatolian horses that were used as a genetic conduit between Eurasian and African horse populations. Ninety-two haplotypes were generated from the combined Ethio-Eurasian mtDNA D-loop sequences. A network reconstructed from the combined haplotypes using Median-Joining algorithm showed that haplotypes generated from native Ethiopian horses formed separate clusters. The present result encourages further investigation of the genetic origin of native African horses by retrieving additional mtDNA sequences deposited in the GenBank for African and Eurasian type horses.


2022 ◽  
Vol 101 (1) ◽  
Author(s):  
Rongala Laxmivandana ◽  
Yoya Vashi ◽  
Dipjyoti Kalita ◽  
Santanu Banik ◽  
Nihar Ranjan Sahoo ◽  
...  

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7173 ◽  
Author(s):  
Wuping Yan ◽  
Juanling Li ◽  
Daojun Zheng ◽  
Cynthia Friedman ◽  
Huafeng Wang

Background Mallotus oblongifolius, an evergreen shrub endemic to Hainan Island, China, is important both medicinally and economically. Due to its special medicinal significance and the continuing rise of market demand, its populations in the wild have been subject to long-term illegal and unrestrained collection. Hence, an evaluation of genetic variability is essential for the conservation and genetic reserve development of this species. Methods Sequence-related amplified polymorphism (SRAP) and inter-simple sequence repeat (ISSR) markers were employed to assess the genetic diversity and genetic structure of 20 natural populations of M. oblongifolius growing in different eco-geographical regions of Hainan Island, China. Results We revealed a considerable genetic diversity (h = 0.336, I = 0.5057, SRAP markers; h = 0.3068, I = 0.4657, ISSR markers) and weak genetic differentiation (Gst = 0.2764 for SRAP, Gst = 0.2709 for ISSR) with the same gene flow (Nm = 1.3092 for SRAP, Nm = 1.346 for ISSR) among the M. oblongifolius populations. The Mantel Test showed that the distribution of genetic variation among populations could not be explained by the pronounced geographical distances (r = 0.01255, p = 0.5538). All results of the Unweighted Pair Group Method with Arithmetic Mean (UPGMA), Neighbor-joining (NJ), Principal Coordinate Analysis (PCoA) and Bayesian analyses supported a habitat-specific genetic clustering model for M. oblongifolius, indicating a local adaptive divergence for the studied populations. Discussion We suggested that the habitat fragmentation and specificity for M. oblongifolius populations weakened the natural gene flow and promoted an adaptation to special habitats, which was the main reason for local adaptive divergence among M. oblongifolius.


Sign in / Sign up

Export Citation Format

Share Document