Are muscle fiber types different between normal and dark-cutting beef?

Author(s):  
Bimol Roy ◽  
Shahid Mahmood ◽  
H. L. Bruce

Muscle fiber (MF) characteristics of Longissimus thoracis (LT) muscles from heifer (n = 11) and steer (n = 12) carcasses graded Canada AA (AA, normal, n = 4/sex) or dark-cutting (Canada B4) were examined and related to beef quality. Atypical (AB4, pH < 5.9, n = 4/sex) and typical (TB4, pH > 5.9, n = 3 and 4 for heifers and steers, respectively) dark-cutting carcasses were represented. Muscle fiber type proportions did not differ between AA, AB4 and TB4 muscles, although type I and IIB muscle fiber diameters were greater in TB4 than in AA LT. That AB4 muscle fiber proportions were not different from AA and TB4 muscles suggests that the increased MF diameter of TB4 muscle was due to water retained by muscle proteins at high ultimate pH, as evidenced by decreased cooking loss. Dark-cutting was therefore unrelated to muscle fiber proportions, and increased Type I and IIB diameters in dark cutting LT were likely driven by elevated intramuscular ultimate pH.

1996 ◽  
Vol 80 (3) ◽  
pp. 1061-1064 ◽  
Author(s):  
D. Constantin-Teodosiu ◽  
S. Howell ◽  
P. L. Greenhaff

The effect of prolonged exhaustive exercise on free carnitine and acetylcarnitine concentrations in mixed-fiber skeletal muscle and in type I and II muscle fibers was investigated in humans. Needle biopsy samples were obtained from the vastus lateralis of six subjects immediately after exhaustive one-legged cycling at approximately 75% of maximal O2 uptake from both the exercised and nonexercised (control) legs. In the resting (control) leg, there was no difference in the free carnitine concentration between type I and II fibers (20.36 +/- 1.25 and 20.51 +/- 1.16 mmol/kg dry muscle, respectively) despite the greater potential for fat oxidation in type I fibers. However, the acetylcarnitine concentration was slightly greater in type I fibers (P < 0.01). During exercise, acetylcarnitine accumulation occurred in both muscle fiber types, but accumulation was greatest in type I fibers (P < 0.005). Correspondingly, the concentration of free carnitine was significantly lower in type I fibers at the end of exercise (P < 0.001). The sum of free carnitine and acetylcarnitine concentrations in type I and II fibers at rest was similar and was unchanged by exercise. In conclusion, the findings of the present study support the suggestion that carnitine buffers excess acetyl group formation during exercise and that this occurs in both type I and II fibers. However, the greater accumulation of acetylcarnitine in type I fibers during prolonged exercise probably reflects the greater mitochondrial content of this fiber type.


1991 ◽  
Vol 261 (5) ◽  
pp. C774-C779 ◽  
Author(s):  
M. Locke ◽  
E. G. Noble ◽  
B. G. Atkinson

The most prominent group of stress or heat-shock proteins (HSPs) has an Mr of approximately 70,000 and is collectively referred to as the HSP70 family. The extent of stress inducibility and subcellular location of the various HSP70 isoforms differ, but all appear to be involved with ATP-dependent stabilization or solubilization of proteins. One isoform, termed the inducible isoform of HSP70 (HSP72i), is normally absent in unstressed cells. In a previous study, we detected a protein corresponding in Mr and pI to HSP72i in unstressed rat muscle. Therefore, it was of interest to determine if this expression in unstressed muscle cells is general or confined to specific muscle fiber types. To answer this question we have employed various rat hindlimb muscles that differ in fiber type proportion from predominantly type I (soleus) to predominantly type IIB (white gastrocnemius). Proteins from muscle homogenates were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, blotted to a nylon membrane, probed with a monoclonal antibody for HSP72i, and visualized using an alkaline phosphatase-conjugated secondary antibody. Immunoblot analyses demonstrate the constitutive expression of HSP72i in rat muscles comprised primarily of type I muscle fibers (soleus), but not in muscles comprised primarily of type IIB fibers (white gastrocnemius). In muscles of mixed fiber type, HSP72i content is roughly proportional to the percentage of type I fibers. These results substantiate that unstressed rat muscles express the inducible HSP72 isoform and demonstrate that its constitutive expression is proportional to the type I muscle fiber composition.


2013 ◽  
Vol 634-638 ◽  
pp. 1263-1267
Author(s):  
Lin Su ◽  
Hui Li ◽  
Xue Xin ◽  
Yan Duan ◽  
Xiao Qing Hua ◽  
...  

Muscle fiber is the basic unit of muscle tissue, this paper summarized the types of muscle fiber of animals, the influence factors of muscle fiber type distribution and the muscle fiber type conversion in the process of growth constantly. Discuss the important effect of muscle fiber type on meat quality.


1989 ◽  
Vol 256 (1) ◽  
pp. C50-C58 ◽  
Author(s):  
D. Smith ◽  
H. Green ◽  
J. Thomson ◽  
M. Sharratt

The effects of maturation on the interrelationship between skeletal muscle fiber area and capillarization was investigated in specific fiber types (I, IIa, IIb, IIc) of male Wistar rats at seven developmental periods ranging from 8 to 85 days postnatal. Fiber type specific developmental properties were compared in three different muscles, the diaphragm (DIA), extensor digitorum longus (EDL), and soleus (SOL), which are known to differ widely in function. All fiber types in each of the three muscles examined exhibited large increases in area (FA), the magnitude and time course of the increase being related to both the type of fiber and the muscle in which the fiber was located. For type I fibers, areas increased from 3- to 18-fold (SOL greater than EDL greater than DIA), whereas in type IIa fibers, area increased ranged between 5- to 11-fold (SOL greater than EDL greater than DIA). Growth rates in IIb fibers were more homogeneous between muscles ranging from 11- to 14-fold. Capillarization, as indicated by the capillary contacts per fiber (CC), increased in all fiber types regardless of muscle origin. These increases ranged between 1.7- and 2.2-fold for type I fibers, between 2.4- and 2.5-fold for type IIa fibers, and between 2.0- and 3.0-fold for type IIb fibers. In general, capillary density expressed as the ratio of the number of capillary contacts divided by the fiber area (CC/FA) progressively declined in all fiber types with age. The rate of the decline in CC/FA was mediated in large part by the changes in fiber area.(ABSTRACT TRUNCATED AT 250 WORDS)


1981 ◽  
Vol 90 (5) ◽  
pp. 423-429 ◽  
Author(s):  
Leslie T. Malmgren ◽  
Richard R. Gacek

The muscle fiber type composition of the human posterior cricoarytenoid muscle (PCA) was examined using a large battery of histochemical techniques. Staining for myosin ATPase (pH 9.9) indicated that the muscles were composed of 52% ± 11.8 SD type 1 (slowly contracting) fibers and 48% ± 11.9 SD type 2 (rapidly contracting) fibers. In order to obtain information concerning the probable fatigue resistance of the type 2 fibers, serial sections were processed to determine the relative extent of ATPase inactivation at various pH levels in the acid range and to obtain data concerning the relative activities of oxidative and glycolytic enzymes and their substrates. The great majority of the type 2 fibers were of the 2A (fatigue resistant) fiber type. This indication of a capacity for prolonged activity was substantiated by the presence of high activities of succinic dehydrogenase, a mitochondrial enzyme which is involved in oxidative metabolism. Type 2C fibers (generally considered to be an undifferentiated fiber type) were also present but relatively rare. The overall enzyme profiles of many of the muscle fibers in the human PCA differed from those typical of fibers having the same alkaline ATPase and acid ATPase characteristics in most other mammalian muscles. Since muscle fiber biochemistry reflects the activity pattern of the motor unit, these unusual enzyme profiles may be the result of activity patterns that are associated with the inspiratory cycle and/or patterns of activity that are relatively specific to the PCA. Four of the ten muscles examined had unequivocal evidence of muscle fiber type grouping, a manifestation of partial denervation followed by reinnervation. This is interesting since most of the cases were in the fifth decade. Muscle fiber type grouping has been shown to occur selectively in certain other human muscles and to increase with age, eventually resulting in muscle atrophy. This suggests the possibility that the human PCA is for some reason selectively vulnerable to partial denervation and indicates the need for more extensive data concerning the relationship of muscle fiber type grouping in the PCA and other laryngeal muscles to age.


1983 ◽  
Vol 245 (2) ◽  
pp. H265-H275 ◽  
Author(s):  
B. G. Mackie ◽  
R. L. Terjung

Blood flow to fast-twitch red (FTR), fast-twitch white (FTW), and slow-twitch red (STR) muscle fiber sections of the gastrocnemius-plantaris-soleus muscle group was determined using 15 +/- 3-microns microspheres during in situ stimulation in pentobarbital-anesthetized rats. Steady-state blood flows were assessed during the 10th min of contraction using twitch (0.1, 0.5, 1, 3, and 5 Hz) and tetanic (7.5, 15, 30, 60, and 120/min) stimulation conditions. In addition, an earlier blood flow determination was begun at 3 min (twitch series) or at 30 s (tetanic series) of stimulation. Blood flow was highest in the FTR (220-240 ml X min-1 X 100 g-1), intermediate in the STR (140), and lowest in the FTW (70-80) section during tetanic contraction conditions estimated to coincide with the peak aerobic function of each fiber type. These blood flows are fairly proportional to the differences in oxidative capacity among fiber types. Further, their absolute values are similar to those predicted from the relationship between blood flow and oxidative capacity found by others for dog and cat muscles. During low-frequency contraction conditions, initial blood flow to the FTR and STR sections were excessively high and not dependent on contraction frequency. However, blood flows subsequently decreased to values in keeping with the relative energy demands. In contrast, FTW muscle did not exhibit this time-dependent relative hyperemia. Thus, besides the obvious quantitative differences between skeletal muscle fiber types, there are qualitative differences in blood flow response during contractions. Our findings establish that, based on fiber type composition, a heterogeneity in blood flow distribution can occur within a whole muscle during contraction.


2021 ◽  
Vol 154 (9) ◽  
Author(s):  
C. Manno ◽  
E. Tammineni ◽  
Y. Oropeza ◽  
L. Figueroa ◽  
E. Rios

This work describes a simple way to identify fiber types in living muscles by fluorescence lifetime imaging microscopy (FLIM). We quantified the mean values of lifetimes derived from a two-exponential fit (τ1 and τ2) in freshly dissected mouse FDB and soleus muscles. While τ1 values did not change between muscles, the distribution of τ2 shifted to higher values in FDB. To understand the origin of this difference, we obtained maps of autofluorescence lifetimes in cryosections of both muscles and paired them with immunofluorescence images of myosin heavy chain isoforms (MHC), which allow identification of fiber types. In soleus, τ2 was 3.1 ns for type I (SEM = 0.009, n = 49), 3.4 ns for type IIA (SEM = 0.01, n = 30), and 3.3 ns for type IIX (SEM = 0.01, n = 21). In FDB muscle, τ2 was 3.17 ns for type I (SEM = 0.04, n = 18), 3.5 ns for type IIA (SEM = 0.03, n = 27), and 3.62 ns for type IIX (SEM = 0.03, n = 22). From the distribution of measures, it follows that an FDB fiber with τ2 &gt;3.3 ns is expected to be of type II, and of type I otherwise. This simple classification method has first- and second-class errors estimated at 0.06 and 0.27, respectively. Studies in progress aim at further elucidating the reasons for the different lifetimes, not just among fiber types but between fibers of the same type in the two muscles. Preliminary results point at differences in both the oxidation-reduction and protein-bound versus free states of flavins as causes for the observed divergence of fluorescence lifetimes. Lifetime maps of autofluorescence therefore constitute a tool to identify fiber type that, being practical, fast, and noninvasive, can be applied in living tissue without compromising other experimental interventions.


1997 ◽  
Vol 22 (4) ◽  
pp. 307-327 ◽  
Author(s):  
Robert S. Staron

This brief review attempts to summarize a number of studies on the delineation, development, and distribution of human skeletal muscle fiber types. A total of seven fiber types can be identified in human limb and trunk musculature based on the pH stability/ability of myofibrillar adenosine triphosphatase (mATPase). For most human muscles, mATPase-based fiber types correlate with the myosin heavy chain (MHC) content. Thus, each histochemically identified fiber has a specific MHC profile. Although this categorization is useful, it must be realized that muscle fibers are highly adaptable and that innumerable fiber type transients exist. Also, some muscles contain specific MHC isoforms and/or combinations that do not permit routine mATPase-based fiber typing. Although the major populations of fast and slow are, for the most part, established shortly after birth, subtle alterations take place throughout life. These changes appear to relate to alterations in activity and/or hormonal levels, and perhaps later in life, total fiber number. Because large variations in fiber type distribution can be found within a muscle and between individuals, interpretation of data gathered from human muscle is often difficult. Key words: aging, myosin heavy chains, myogenesis, myofibrillar adenosine triphosphate


2012 ◽  
Vol 22 (4) ◽  
pp. 292-303 ◽  
Author(s):  
Ildus I. Ahmetov ◽  
Olga L. Vinogradova ◽  
Alun G. Williams

The ability to perform aerobic or anaerobic exercise varies widely among individuals, partially depending on their muscle-fiber composition. Variability in the proportion of skeletal-muscle fiber types may also explain marked differences in aspects of certain chronic disease states including obesity, insulin resistance, and hypertension. In untrained individuals, the proportion of slow-twitch (Type I) fibers in the vastus lateralis muscle is typically around 50% (range 5–90%), and it is unusual for them to undergo conversion to fast-twitch fibers. It has been suggested that the genetic component for the observed variability in the proportion of Type I fibers in human muscles is on the order of 40–50%, indicating that muscle fiber-type composition is determined by both genotype and environment. This article briefly reviews current progress in the understanding of genetic determinism of fiber-type proportion in human skeletal muscle. Several polymorphisms of genes involved in the calcineurin–NFAT pathway, mitochondrial biogenesis, glucose and lipid metabolism, cytoskeletal function, hypoxia and angiogenesis, and circulatory homeostasis have been associated with fiber-type composition. As muscle is a major contributor to metabolism and physical strength and can readily adapt, it is not surprising that many of these gene variants have been associated with physical performance and athlete status, as well as metabolic and cardiovascular diseases. Genetic variants associated with fiber-type proportions have important implications for our understanding of muscle function in both health and disease.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Han Wang ◽  
Zhonghao Shen ◽  
Xiaolong Zhou ◽  
Songbai Yang ◽  
Feifei Yan ◽  
...  

The difference in muscle fiber types is very important to the muscle development and meat quality of broilers. At present, the molecular regulation mechanisms of skeletal muscle fiber-type transformation in broilers are still unclear. In this study, differentially expressed genes between breast and leg muscles in broilers were analyzed using RNA-seq. A total of 767 DEGs were identified. Compared with leg muscle, there were 429 upregulated genes and 338 downregulated genes in breast muscle. Gene Ontology (GO) enrichment indicated that these DEGs were mainly involved in cellular processes, single organism processes, cells, and cellular components, as well as binding and catalytic activity. KEGG analysis shows that a total of 230 DEGs were mapped to 126 KEGG pathways and significantly enriched in the four pathways of glycolysis/gluconeogenesis, starch and sucrose metabolism, insulin signalling pathways, and the biosynthesis of amino acids. Quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) was used to verify the differential expression of 7 selected DEGs, and the results were consistent with RNA-seq data. In addition, the expression profile of MyHC isoforms in chicken skeletal muscle cells showed that with the extension of differentiation time, the expression of fast fiber subunits (types IIA and IIB) gradually increased, while slow muscle fiber subunits (type I) showed a downward trend after 4 days of differentiation. The differential genes screened in this study will provide some new ideas for further understanding the molecular mechanism of skeletal muscle fiber transformation in broilers.


Sign in / Sign up

Export Citation Format

Share Document