Histochemical Characteristics of Muscle Fiber Types in the Posterior Cricoarytenoid Muscle

1981 ◽  
Vol 90 (5) ◽  
pp. 423-429 ◽  
Author(s):  
Leslie T. Malmgren ◽  
Richard R. Gacek

The muscle fiber type composition of the human posterior cricoarytenoid muscle (PCA) was examined using a large battery of histochemical techniques. Staining for myosin ATPase (pH 9.9) indicated that the muscles were composed of 52% ± 11.8 SD type 1 (slowly contracting) fibers and 48% ± 11.9 SD type 2 (rapidly contracting) fibers. In order to obtain information concerning the probable fatigue resistance of the type 2 fibers, serial sections were processed to determine the relative extent of ATPase inactivation at various pH levels in the acid range and to obtain data concerning the relative activities of oxidative and glycolytic enzymes and their substrates. The great majority of the type 2 fibers were of the 2A (fatigue resistant) fiber type. This indication of a capacity for prolonged activity was substantiated by the presence of high activities of succinic dehydrogenase, a mitochondrial enzyme which is involved in oxidative metabolism. Type 2C fibers (generally considered to be an undifferentiated fiber type) were also present but relatively rare. The overall enzyme profiles of many of the muscle fibers in the human PCA differed from those typical of fibers having the same alkaline ATPase and acid ATPase characteristics in most other mammalian muscles. Since muscle fiber biochemistry reflects the activity pattern of the motor unit, these unusual enzyme profiles may be the result of activity patterns that are associated with the inspiratory cycle and/or patterns of activity that are relatively specific to the PCA. Four of the ten muscles examined had unequivocal evidence of muscle fiber type grouping, a manifestation of partial denervation followed by reinnervation. This is interesting since most of the cases were in the fifth decade. Muscle fiber type grouping has been shown to occur selectively in certain other human muscles and to increase with age, eventually resulting in muscle atrophy. This suggests the possibility that the human PCA is for some reason selectively vulnerable to partial denervation and indicates the need for more extensive data concerning the relationship of muscle fiber type grouping in the PCA and other laryngeal muscles to age.

2013 ◽  
Vol 634-638 ◽  
pp. 1263-1267
Author(s):  
Lin Su ◽  
Hui Li ◽  
Xue Xin ◽  
Yan Duan ◽  
Xiao Qing Hua ◽  
...  

Muscle fiber is the basic unit of muscle tissue, this paper summarized the types of muscle fiber of animals, the influence factors of muscle fiber type distribution and the muscle fiber type conversion in the process of growth constantly. Discuss the important effect of muscle fiber type on meat quality.


1988 ◽  
Vol 255 (6) ◽  
pp. G772-G778 ◽  
Author(s):  
J. Krier ◽  
T. Adams ◽  
R. A. Meyer

The contractile properties, morphology, and the distribution of striated muscle fiber types of the external and sphincter (EAS) were determined using axial force measurements, fiber size cross-sectional area measurements, and histochemistry. Electrical stimulation of motor axons in pudendal nerve at supramaximal intensities (10 V, 0.05 ms duration) elicited twitch contractions of EAS. The time to peak force after a single pulse ranged from 37 to 42 ms. The time for relaxation to half-maximal twitch force ranged from 20 to 29 ms. Repetitive stimulation of motor axons (0.1-3.0 Hz) produced potentiation and fatigue of single twitch contractile force, suggesting that the EAS of the cat is comprised predominantly of fast-twitch muscle fibers. Confirmation of skeletal muscle fiber types was determined by histochemistry. Frozen serial cross sections of EAS were incubated to demonstrate succinic dehydrogenase (SDH) and myosin adenosine triphosphatase after alkaline preincubation (pH 10.4). Based on these reactions, muscle fibers were classified as fast glycolytic (FG) (high ATPase, low SDH), fast oxidative-glycolytic (FOG) (high ATPase, high SDH), and slow oxidative (SO) (low ATPase, high SDH). The mean percentage +/- SE of each histochemical type was the following: FG, 73.5 +/- 3.9; FOG, 22.8 +/- 3.7; and SO, 3.7 +/- 0.6. These results indicate that the predominant fiber type for the EAS is FG. The EAS of the cat is considered a nominally fast-twitch muscle.


Author(s):  
Bimol Roy ◽  
Shahid Mahmood ◽  
H. L. Bruce

Muscle fiber (MF) characteristics of Longissimus thoracis (LT) muscles from heifer (n = 11) and steer (n = 12) carcasses graded Canada AA (AA, normal, n = 4/sex) or dark-cutting (Canada B4) were examined and related to beef quality. Atypical (AB4, pH < 5.9, n = 4/sex) and typical (TB4, pH > 5.9, n = 3 and 4 for heifers and steers, respectively) dark-cutting carcasses were represented. Muscle fiber type proportions did not differ between AA, AB4 and TB4 muscles, although type I and IIB muscle fiber diameters were greater in TB4 than in AA LT. That AB4 muscle fiber proportions were not different from AA and TB4 muscles suggests that the increased MF diameter of TB4 muscle was due to water retained by muscle proteins at high ultimate pH, as evidenced by decreased cooking loss. Dark-cutting was therefore unrelated to muscle fiber proportions, and increased Type I and IIB diameters in dark cutting LT were likely driven by elevated intramuscular ultimate pH.


1983 ◽  
Vol 245 (2) ◽  
pp. H265-H275 ◽  
Author(s):  
B. G. Mackie ◽  
R. L. Terjung

Blood flow to fast-twitch red (FTR), fast-twitch white (FTW), and slow-twitch red (STR) muscle fiber sections of the gastrocnemius-plantaris-soleus muscle group was determined using 15 +/- 3-microns microspheres during in situ stimulation in pentobarbital-anesthetized rats. Steady-state blood flows were assessed during the 10th min of contraction using twitch (0.1, 0.5, 1, 3, and 5 Hz) and tetanic (7.5, 15, 30, 60, and 120/min) stimulation conditions. In addition, an earlier blood flow determination was begun at 3 min (twitch series) or at 30 s (tetanic series) of stimulation. Blood flow was highest in the FTR (220-240 ml X min-1 X 100 g-1), intermediate in the STR (140), and lowest in the FTW (70-80) section during tetanic contraction conditions estimated to coincide with the peak aerobic function of each fiber type. These blood flows are fairly proportional to the differences in oxidative capacity among fiber types. Further, their absolute values are similar to those predicted from the relationship between blood flow and oxidative capacity found by others for dog and cat muscles. During low-frequency contraction conditions, initial blood flow to the FTR and STR sections were excessively high and not dependent on contraction frequency. However, blood flows subsequently decreased to values in keeping with the relative energy demands. In contrast, FTW muscle did not exhibit this time-dependent relative hyperemia. Thus, besides the obvious quantitative differences between skeletal muscle fiber types, there are qualitative differences in blood flow response during contractions. Our findings establish that, based on fiber type composition, a heterogeneity in blood flow distribution can occur within a whole muscle during contraction.


1997 ◽  
Vol 22 (4) ◽  
pp. 307-327 ◽  
Author(s):  
Robert S. Staron

This brief review attempts to summarize a number of studies on the delineation, development, and distribution of human skeletal muscle fiber types. A total of seven fiber types can be identified in human limb and trunk musculature based on the pH stability/ability of myofibrillar adenosine triphosphatase (mATPase). For most human muscles, mATPase-based fiber types correlate with the myosin heavy chain (MHC) content. Thus, each histochemically identified fiber has a specific MHC profile. Although this categorization is useful, it must be realized that muscle fibers are highly adaptable and that innumerable fiber type transients exist. Also, some muscles contain specific MHC isoforms and/or combinations that do not permit routine mATPase-based fiber typing. Although the major populations of fast and slow are, for the most part, established shortly after birth, subtle alterations take place throughout life. These changes appear to relate to alterations in activity and/or hormonal levels, and perhaps later in life, total fiber number. Because large variations in fiber type distribution can be found within a muscle and between individuals, interpretation of data gathered from human muscle is often difficult. Key words: aging, myosin heavy chains, myogenesis, myofibrillar adenosine triphosphate


1996 ◽  
Vol 80 (3) ◽  
pp. 1061-1064 ◽  
Author(s):  
D. Constantin-Teodosiu ◽  
S. Howell ◽  
P. L. Greenhaff

The effect of prolonged exhaustive exercise on free carnitine and acetylcarnitine concentrations in mixed-fiber skeletal muscle and in type I and II muscle fibers was investigated in humans. Needle biopsy samples were obtained from the vastus lateralis of six subjects immediately after exhaustive one-legged cycling at approximately 75% of maximal O2 uptake from both the exercised and nonexercised (control) legs. In the resting (control) leg, there was no difference in the free carnitine concentration between type I and II fibers (20.36 +/- 1.25 and 20.51 +/- 1.16 mmol/kg dry muscle, respectively) despite the greater potential for fat oxidation in type I fibers. However, the acetylcarnitine concentration was slightly greater in type I fibers (P < 0.01). During exercise, acetylcarnitine accumulation occurred in both muscle fiber types, but accumulation was greatest in type I fibers (P < 0.005). Correspondingly, the concentration of free carnitine was significantly lower in type I fibers at the end of exercise (P < 0.001). The sum of free carnitine and acetylcarnitine concentrations in type I and II fibers at rest was similar and was unchanged by exercise. In conclusion, the findings of the present study support the suggestion that carnitine buffers excess acetyl group formation during exercise and that this occurs in both type I and II fibers. However, the greater accumulation of acetylcarnitine in type I fibers during prolonged exercise probably reflects the greater mitochondrial content of this fiber type.


1984 ◽  
Vol 51 (3) ◽  
pp. 529-537 ◽  
Author(s):  
D. W. Sickles ◽  
T. G. Oblak

We have examined the oxidative metabolism of rat alpha-motoneurons innervating muscles composed predominantly of one muscle-fiber type. Intramuscular injections of horseradish peroxidase (HRP) into the tensor fasciae latae (TFL) (approximately 94% fast-twitch glycolytic fibers, FG), tibialis anterior (TA) (approximately 66% fast-twitch oxidative-glycolytic, FOG; 32% FG), and soleus (SOL) (approximately 84% slow-twitch oxidative, SO) muscles permitted identification of motoneurons innervating these muscles. gamma-Motoneurons (less than 25-micron average soma diameter) were eliminated from the sampling. The alpha-motoneurons innervating the TFL were considered as FG, those innervating the tibialis anterior as FOG, and those of the soleus as SO. Alternate 5-micron serial cryostat sections were processed for HRP and nicotinamide adenine dinucleotide-diapharase (NADH-D) (oxidative enzyme) activities. Controls were included to assure reliability of reaction product quantitation. Motoneuron pools of each muscle were characterized by their shape and location within the ventral horn. Cells identified on HRP sections as innervating each of the muscles were located on sections processed for NADH-D activity. The optical density of motoneurons in sections processed for NADH-D activity was measured with a Zeiss Zonax MPM 03 microdensitometer. The mean relative NADH-D activities (optical density) of alpha-motoneurons innervating the TFL (FG), TA (FOG), and SOL(SO) muscles were 0.261, 0.305, and 0.447, respectively. Although some overlap in distribution of enzyme activities was observed, statistical analysis indicated significant differences between the NADH-D activities of each type of alpha-motoneuron. This is the first report of any metabolic difference in alpha-motoneurons belonging to different motor-unit types.(ABSTRACT TRUNCATED AT 250 WORDS)


1985 ◽  
Vol 59 (6) ◽  
pp. 1716-1720 ◽  
Author(s):  
P. A. Tesch ◽  
J. Karlsson

Tissue samples were obtained from vastus lateralis and deltoid muscles of physical education students (n = 12), Greco-Roman wrestlers (n = 8), flat-water kayakers (n = 9), middle- and long-distance runners (n = 9), and olympic weight and power lifters (n = 7). Histochemical stainings for myofibrillar adenosinetriphosphatase and NADH-tetrazolium reductase were applied to assess the relative distribution of fast-twitch and slow-twitch (ST) muscle fiber types and fiber size. The %ST was not different in the vastus (mean SD 48 +/- 14) and deltoid (56 +/- 13) muscles. The %ST was higher (P less than 0.001), however, in the deltoid compared with vastus muscle of kayakers. This pattern was reversed in runners (P less than 0.001). The %ST of the vastus was higher (P less than 0.001) in runners than in any of the other groups. The %ST of the deltoid muscle was higher in kayakers than in students, runners (P less than 0.001), and lifters (P less than 0.05). The mean fiber area and the area of ST fibers were greater (P less than 0.01) in the vastus than the deltoid muscle. Our data show a difference in fiber type distribution between the trained and nontrained muscles of endurance athletes. This pattern may reflect the adaptive response to long-term endurance training.


Sign in / Sign up

Export Citation Format

Share Document