Carnitine metabolism in human muscle fiber types during submaximal dynamic exercise

1996 ◽  
Vol 80 (3) ◽  
pp. 1061-1064 ◽  
Author(s):  
D. Constantin-Teodosiu ◽  
S. Howell ◽  
P. L. Greenhaff

The effect of prolonged exhaustive exercise on free carnitine and acetylcarnitine concentrations in mixed-fiber skeletal muscle and in type I and II muscle fibers was investigated in humans. Needle biopsy samples were obtained from the vastus lateralis of six subjects immediately after exhaustive one-legged cycling at approximately 75% of maximal O2 uptake from both the exercised and nonexercised (control) legs. In the resting (control) leg, there was no difference in the free carnitine concentration between type I and II fibers (20.36 +/- 1.25 and 20.51 +/- 1.16 mmol/kg dry muscle, respectively) despite the greater potential for fat oxidation in type I fibers. However, the acetylcarnitine concentration was slightly greater in type I fibers (P < 0.01). During exercise, acetylcarnitine accumulation occurred in both muscle fiber types, but accumulation was greatest in type I fibers (P < 0.005). Correspondingly, the concentration of free carnitine was significantly lower in type I fibers at the end of exercise (P < 0.001). The sum of free carnitine and acetylcarnitine concentrations in type I and II fibers at rest was similar and was unchanged by exercise. In conclusion, the findings of the present study support the suggestion that carnitine buffers excess acetyl group formation during exercise and that this occurs in both type I and II fibers. However, the greater accumulation of acetylcarnitine in type I fibers during prolonged exercise probably reflects the greater mitochondrial content of this fiber type.

1989 ◽  
Vol 256 (1) ◽  
pp. C50-C58 ◽  
Author(s):  
D. Smith ◽  
H. Green ◽  
J. Thomson ◽  
M. Sharratt

The effects of maturation on the interrelationship between skeletal muscle fiber area and capillarization was investigated in specific fiber types (I, IIa, IIb, IIc) of male Wistar rats at seven developmental periods ranging from 8 to 85 days postnatal. Fiber type specific developmental properties were compared in three different muscles, the diaphragm (DIA), extensor digitorum longus (EDL), and soleus (SOL), which are known to differ widely in function. All fiber types in each of the three muscles examined exhibited large increases in area (FA), the magnitude and time course of the increase being related to both the type of fiber and the muscle in which the fiber was located. For type I fibers, areas increased from 3- to 18-fold (SOL greater than EDL greater than DIA), whereas in type IIa fibers, area increased ranged between 5- to 11-fold (SOL greater than EDL greater than DIA). Growth rates in IIb fibers were more homogeneous between muscles ranging from 11- to 14-fold. Capillarization, as indicated by the capillary contacts per fiber (CC), increased in all fiber types regardless of muscle origin. These increases ranged between 1.7- and 2.2-fold for type I fibers, between 2.4- and 2.5-fold for type IIa fibers, and between 2.0- and 3.0-fold for type IIb fibers. In general, capillary density expressed as the ratio of the number of capillary contacts divided by the fiber area (CC/FA) progressively declined in all fiber types with age. The rate of the decline in CC/FA was mediated in large part by the changes in fiber area.(ABSTRACT TRUNCATED AT 250 WORDS)


2012 ◽  
Vol 22 (4) ◽  
pp. 292-303 ◽  
Author(s):  
Ildus I. Ahmetov ◽  
Olga L. Vinogradova ◽  
Alun G. Williams

The ability to perform aerobic or anaerobic exercise varies widely among individuals, partially depending on their muscle-fiber composition. Variability in the proportion of skeletal-muscle fiber types may also explain marked differences in aspects of certain chronic disease states including obesity, insulin resistance, and hypertension. In untrained individuals, the proportion of slow-twitch (Type I) fibers in the vastus lateralis muscle is typically around 50% (range 5–90%), and it is unusual for them to undergo conversion to fast-twitch fibers. It has been suggested that the genetic component for the observed variability in the proportion of Type I fibers in human muscles is on the order of 40–50%, indicating that muscle fiber-type composition is determined by both genotype and environment. This article briefly reviews current progress in the understanding of genetic determinism of fiber-type proportion in human skeletal muscle. Several polymorphisms of genes involved in the calcineurin–NFAT pathway, mitochondrial biogenesis, glucose and lipid metabolism, cytoskeletal function, hypoxia and angiogenesis, and circulatory homeostasis have been associated with fiber-type composition. As muscle is a major contributor to metabolism and physical strength and can readily adapt, it is not surprising that many of these gene variants have been associated with physical performance and athlete status, as well as metabolic and cardiovascular diseases. Genetic variants associated with fiber-type proportions have important implications for our understanding of muscle function in both health and disease.


1985 ◽  
Vol 59 (6) ◽  
pp. 1716-1720 ◽  
Author(s):  
P. A. Tesch ◽  
J. Karlsson

Tissue samples were obtained from vastus lateralis and deltoid muscles of physical education students (n = 12), Greco-Roman wrestlers (n = 8), flat-water kayakers (n = 9), middle- and long-distance runners (n = 9), and olympic weight and power lifters (n = 7). Histochemical stainings for myofibrillar adenosinetriphosphatase and NADH-tetrazolium reductase were applied to assess the relative distribution of fast-twitch and slow-twitch (ST) muscle fiber types and fiber size. The %ST was not different in the vastus (mean SD 48 +/- 14) and deltoid (56 +/- 13) muscles. The %ST was higher (P less than 0.001), however, in the deltoid compared with vastus muscle of kayakers. This pattern was reversed in runners (P less than 0.001). The %ST of the vastus was higher (P less than 0.001) in runners than in any of the other groups. The %ST of the deltoid muscle was higher in kayakers than in students, runners (P less than 0.001), and lifters (P less than 0.05). The mean fiber area and the area of ST fibers were greater (P less than 0.01) in the vastus than the deltoid muscle. Our data show a difference in fiber type distribution between the trained and nontrained muscles of endurance athletes. This pattern may reflect the adaptive response to long-term endurance training.


1991 ◽  
Vol 261 (5) ◽  
pp. C774-C779 ◽  
Author(s):  
M. Locke ◽  
E. G. Noble ◽  
B. G. Atkinson

The most prominent group of stress or heat-shock proteins (HSPs) has an Mr of approximately 70,000 and is collectively referred to as the HSP70 family. The extent of stress inducibility and subcellular location of the various HSP70 isoforms differ, but all appear to be involved with ATP-dependent stabilization or solubilization of proteins. One isoform, termed the inducible isoform of HSP70 (HSP72i), is normally absent in unstressed cells. In a previous study, we detected a protein corresponding in Mr and pI to HSP72i in unstressed rat muscle. Therefore, it was of interest to determine if this expression in unstressed muscle cells is general or confined to specific muscle fiber types. To answer this question we have employed various rat hindlimb muscles that differ in fiber type proportion from predominantly type I (soleus) to predominantly type IIB (white gastrocnemius). Proteins from muscle homogenates were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, blotted to a nylon membrane, probed with a monoclonal antibody for HSP72i, and visualized using an alkaline phosphatase-conjugated secondary antibody. Immunoblot analyses demonstrate the constitutive expression of HSP72i in rat muscles comprised primarily of type I muscle fibers (soleus), but not in muscles comprised primarily of type IIB fibers (white gastrocnemius). In muscles of mixed fiber type, HSP72i content is roughly proportional to the percentage of type I fibers. These results substantiate that unstressed rat muscles express the inducible HSP72 isoform and demonstrate that its constitutive expression is proportional to the type I muscle fiber composition.


1993 ◽  
Vol 41 (7) ◽  
pp. 1013-1021 ◽  
Author(s):  
S Boudriau ◽  
M Vincent ◽  
C H Côté ◽  
P A Rogers

We used immunochemical quantification and indirect immunofluorescence to investigate the cell content, distribution, and organization of microtubules in adult rat slow-twitch soleus and fast-twitch vastus lateralis muscles. An immunoblotting assay demonstrated that the soleus muscle (primarily Type I fibers) was found to have a 1.7-fold higher relative content of alpha-tubulin compared with the superficial portion of the vastus lateralis muscle (primarily Type IIb fibers). Both physiological muscle types revealed a complex arrangement of microtubules which displayed oblique, longitudinal, and transverse orientations within the sarcoplasmic space. The predominance of any one particular orientation varied significantly from one muscle tissue section to another. Nuclei were completely surrounded by a dense net-like structure of microtubules. Both muscle fiber types were found to possess a higher density of microtubules in the subsarcolemmal region. These microtubules followed the contour of the sarcolemma in slightly contracted fibers and showed a fine punctate appearance indicative of a restricted distribution. The immunofluorescence results indicate that microtubules are associated with the sarcolemma and therefore may form a part of the membrane cytoskeletal domain of the muscle fiber. We conclude that the microtubule network of the adult mammalian skeletal muscle fiber constitutes a bone fide component of the exosarcomeric cytoskeletal lattice domain along with the intermediate filaments, and as such could therefore participate in the mechanical integration of the various organelles of the myofibers during the contraction-relaxation cycle.


1999 ◽  
Vol 86 (2) ◽  
pp. 474-478 ◽  
Author(s):  
Sven Asp ◽  
Jens R. Daugaard ◽  
Thomas Rohde ◽  
Kristi Adamo ◽  
Terry Graham

Muscle glycogen remains subnormal several days after muscle damaging exercise. The aims of this study were to investigate how muscle acid-soluble macroglycogen (MG) and acid-insoluble proglycogen (PG) pools are restored after a competitive marathon and also to determine whether glycogen accumulates differently in the various muscle fiber types. Six well-trained marathon runners participated in the study, and muscle biopsies were obtained from the vastus lateralis of the quadriceps muscle before, immediately after, and 1, 2, and 7 days ( days 1, 2, and 7, respectively) after the marathon. During the race, 56 ± 3.8% of muscle glycogen was utilized, and a greater fraction of MG (72 ± 3.7%) was utilized compared with PG (34 ± 6.5%). On day 2, muscle glycogen and MG values remained lower than prerace values, despite a carbohydrate-rich diet, but they had both returned to prerace levels on day 7. The PG concentration was lower on day 1 compared with before the race, whereas there were no significant differences between the prerace PG concentration and the concentrations on days 2 and 7. On day 2 the glycogen concentration was particularly low in the type I fibers, indicating that local processes are important for the accumulation pattern. We conclude that a greater fraction of human muscle MG than of PG is utilized during a marathon and that accumulation of MG is particularly delayed after the prolonged exercise bout. Furthermore, factors produced locally appear important for the glycogen accumulation pattern.


Author(s):  
Bimol Roy ◽  
Shahid Mahmood ◽  
H. L. Bruce

Muscle fiber (MF) characteristics of Longissimus thoracis (LT) muscles from heifer (n = 11) and steer (n = 12) carcasses graded Canada AA (AA, normal, n = 4/sex) or dark-cutting (Canada B4) were examined and related to beef quality. Atypical (AB4, pH < 5.9, n = 4/sex) and typical (TB4, pH > 5.9, n = 3 and 4 for heifers and steers, respectively) dark-cutting carcasses were represented. Muscle fiber type proportions did not differ between AA, AB4 and TB4 muscles, although type I and IIB muscle fiber diameters were greater in TB4 than in AA LT. That AB4 muscle fiber proportions were not different from AA and TB4 muscles suggests that the increased MF diameter of TB4 muscle was due to water retained by muscle proteins at high ultimate pH, as evidenced by decreased cooking loss. Dark-cutting was therefore unrelated to muscle fiber proportions, and increased Type I and IIB diameters in dark cutting LT were likely driven by elevated intramuscular ultimate pH.


2018 ◽  
Vol 125 (3) ◽  
pp. 737-745 ◽  
Author(s):  
Emma A. Mitchell ◽  
Neil R. W. Martin ◽  
Stephen J. Bailey ◽  
Richard A. Ferguson

The asymptote [critical power (CP)] and curvature constant ( W′) of the hyperbolic power-duration relationship can predict performance within the severe-intensity exercise domain. However, the extent to which these parameters relate to skeletal muscle morphology is less clear, particularly in endurance-trained individuals, who, relative to their lesser-trained counterparts, possess skeletal muscles that can support high levels of oxygen transport and oxidative capacity, i.e., elevated type I fiber proportion and cross-sectional area (CSA) and capillarity. Fourteen endurance-trained men performed a maximal incremental test to determine peak oxygen uptake (V̇o2peak; 63.2 ± 4.1 ml·min−1·kg−1, mean ± SD) and maximal aerobic power (406 ± 63 W) and three to five constant-load tests to task failure for the determination of CP (303 ± 52 W) and W′ (17.0 ± 3.0 kJ). Skeletal muscle biopsies were obtained from the vastus lateralis and analyzed for percent proportion of fiber types, CSA, and indexes of capillarity. CP was positively correlated with the percent proportion ( r = 0.79; P = 0.001) and CSA ( r = 0.73; P = 0.003) of type I fibers, capillary-to-fiber ratio ( r = 0.88; P < 0.001), and capillary contacts around type I fibers ( r = 0.94; P < 0.001) and type II fibers ( r = 0.68; P = 0.008). W′ was not correlated with any morphological variables. These data reveal a strong positive association between CP and skeletal muscle capillarity. Our findings support the assertion that CP is an important parameter of aerobic function and offer novel insights into the physiological bases of CP. NEW & NOTEWORTHY This investigation demonstrated very strong positive correlations between critical power and skeletal muscle capillarity, particularly around type I fibers, and type I fiber composition. These correlations were demonstrated in endurance-trained individuals expected to possess well-adapted skeletal muscles, such as high levels of oxygen transport structures and high oxidative capacities, supporting the view that critical power is an important parameter of aerobic function. In contrast, the curvature constant W′ was not associated with fiber type composition or capillarity.


1991 ◽  
Vol 71 (2) ◽  
pp. 558-564 ◽  
Author(s):  
P. F. Gardiner ◽  
B. J. Jasmin ◽  
P. Corriveau

Our aim was to quantify the overload-induced hypertrophy and conversion of fiber types (type II to I) occurring in the medial head of the gastrocnemius muscle (MG). Overload of MG was induced by a bilateral tenotomy/retraction of synergists, followed by 12–18 wk of regular treadmill locomotion (2 h of walking/running per day on 3 of 4 days). We counted all type I fibers and determined type I and II mean fiber areas in eight equidistant sections taken along the length of control and overloaded MG. Increase in muscle weights (31%), as well as in total muscle cross-sectional areas (37%) and fiber areas (type I, 57%; type II, 34%), attested to a significant hypertrophic response in overloaded MG. An increase in type I fiber composition of MG from 7.0 to 11.5% occurred as a result of overload, with the greatest and only statistically significant changes (approximately 70–100%) being found in sections taken from the most rostral 45% of the muscle length. Results of analysis of sections taken from the largest muscle girth showed that it significantly underestimated the extent of fiber conversion that occurred throughout the muscle as a whole. These data obtained on the MG, which possesses a compartmentalization of fiber types, support the notion that all fiber types respond to this model with a similar degree of hypertrophy. Also, they emphasize the complex nature of the adaptive changes that occur in these types of muscles as a result of overload.


1983 ◽  
Vol 245 (2) ◽  
pp. H265-H275 ◽  
Author(s):  
B. G. Mackie ◽  
R. L. Terjung

Blood flow to fast-twitch red (FTR), fast-twitch white (FTW), and slow-twitch red (STR) muscle fiber sections of the gastrocnemius-plantaris-soleus muscle group was determined using 15 +/- 3-microns microspheres during in situ stimulation in pentobarbital-anesthetized rats. Steady-state blood flows were assessed during the 10th min of contraction using twitch (0.1, 0.5, 1, 3, and 5 Hz) and tetanic (7.5, 15, 30, 60, and 120/min) stimulation conditions. In addition, an earlier blood flow determination was begun at 3 min (twitch series) or at 30 s (tetanic series) of stimulation. Blood flow was highest in the FTR (220-240 ml X min-1 X 100 g-1), intermediate in the STR (140), and lowest in the FTW (70-80) section during tetanic contraction conditions estimated to coincide with the peak aerobic function of each fiber type. These blood flows are fairly proportional to the differences in oxidative capacity among fiber types. Further, their absolute values are similar to those predicted from the relationship between blood flow and oxidative capacity found by others for dog and cat muscles. During low-frequency contraction conditions, initial blood flow to the FTR and STR sections were excessively high and not dependent on contraction frequency. However, blood flows subsequently decreased to values in keeping with the relative energy demands. In contrast, FTW muscle did not exhibit this time-dependent relative hyperemia. Thus, besides the obvious quantitative differences between skeletal muscle fiber types, there are qualitative differences in blood flow response during contractions. Our findings establish that, based on fiber type composition, a heterogeneity in blood flow distribution can occur within a whole muscle during contraction.


Sign in / Sign up

Export Citation Format

Share Document