Genetic diversity and population structure of pencil yam (Vigna lanceolata) (Phaseoleae, Fabaceae), a wild herbaceous legume endemic to Australia, revealed by microsatellite markers

Botany ◽  
2015 ◽  
Vol 93 (3) ◽  
pp. 183-191 ◽  
Author(s):  
Phakchana Nubankoh ◽  
Sarocha Pimtong ◽  
Prakit Somta ◽  
Sujinna Dachapak ◽  
Peerasak Srinives

Pencil yam (Vigna lanceolata Benth.) (Phaseoleae, Fabaceae) is a herbaceous legume endemic to Australia. A previous morphological study suggested that pencil yam is a complex species of two or more related taxa with seven distinct morphological types (morphotypes) and, thus, taxonomic revision is necessary. In this study, we assessed genetic diversity and determined the genetic structure of a pencil yam collection of 62 accessions from seven morphotypes using 18 microsatellite (simple sequence repeat) markers with the aim to provide information for taxonomic study. In total, 138 alleles were detected with a mean of 7.67 alleles per locus. Polymorphism information content per marker varied between 0.06 and 0.90 with a mean of 0.61, while the overall gene diversity was 0.62. Bayesian clustering, principal coordinate, and neighbor-joining analyses consistently revealed that these accessions are grouped into two subpopulations with difference in number of alleles, allelic richness, and gene diversity. The population structure was not related to either morphotype or geographical origin. Gene diversity of V. lanceolata was higher than that of wild Vigna radiata (L.) Wilczek and wild Vigna umbellata (Thunb.) Ohwi & Ohashi, comparable with that of wild Vigna mungo (L.) Hepper, Vigna exilis Tateishi & Maxted, and Vigna grandiflora (Prain) Tateishi & Maxted, and lower than that of wild Vigna angularis (Willd.) Ohwi & Ohashi. These results indicated that the taxonomy of V. lanceolata should be revised and that its gene diversity was moderate compared with the other wild Vigna species.

Botany ◽  
2013 ◽  
Vol 91 (10) ◽  
pp. 653-661 ◽  
Author(s):  
Anochar Kaewwongwal ◽  
Arunee Jetsadu ◽  
Prakit Somta ◽  
Sompong Chankaew ◽  
Peerasak Srinives

The objective of this research was to determine the genetic diversity and population structure of natural populations of two rare wild species of Asian Vigna (Phaseoleae, Fabaceae), Vigna exilis Tateishi & Maxted and Vigna grandiflora (Prain) Tateishi & Maxted, from Thailand. Employing 21 simple sequence repeat markers, 107 and 85 individuals from seven and five natural populations of V. exilis and V. grandiflora, respectively, were analyzed. In total, the markers detected 196 alleles for V. exilis and 219 alleles for V. grandiflora. Vigna exilis populations showed lower average values in number of alleles, allelic richness, observed heterozygosity, gene diversity, and outcrossing rate than V. grandiflora populations, namely 58.00% versus 114.60%, 51.96% versus 74.80%, 0.02% versus 0.18%, 0.40% versus 0.66%, and 3.24% versus 17.41%, respectively. Pairwise FST among populations demonstrated that V. exilis was much more differentiated than V. grandiflora. Analysis of molecular variance revealed that 41.83% and 15.06% of total variation resided among the populations of V. exilis and V. grandiflora, respectively. Seven and two genetic clusters were detected for V. grandiflora and V. exilis by STRUCTURE analysis. Our findings suggest that different strategies are required for in situ conservation of the two species. All V. exilis populations, or as many as possible, should be conserved to protect genetic resources of this species, while a few V. grandiflora populations can capture the majority of its genetic variation.


Weed Science ◽  
2018 ◽  
Vol 66 (3) ◽  
pp. 331-339 ◽  
Author(s):  
Te-Ming Tseng ◽  
Vinod K. Shivrain ◽  
Amy Lawton-Rauh ◽  
Nilda R. Burgos

AbstractSeed dormancy allows weedy rice (Oryza sp.) to persist in rice production systems. Weedy and wild relatives of rice (Oryza sativa L.) exhibit different levels of dormancy, which allows them to escape weed management tactics, increasing the potential for flowering synchronization, and therefore gene flow, between weedy Oryza sp. and cultivated rice. In this study, we determined the genetic diversity and divergence of representative dormant and nondormant weedy Oryza sp. groups from Arkansas. Twenty-five simple sequence repeat markers closely associated with seed dormancy were used. Four populations were included: dormant blackhull, dormant strawhull, nondormant blackhull, and nondormant strawhull. The overall gene diversity was 0.355, indicating considerable genetic variation among populations in these dormancy-related loci. Gene diversity among blackhull populations (0.398) was higher than among strawhull populations (0.245). Higher genetic diversity was also observed within and among dormant populations than in nondormant populations. Cluster analysis of 16 accessions, based on Nei’s genetic distance, showed four clusters. Clusters I, III, and IV consisted of only blackhull accessions, whereas Cluster II comprised only strawhull accessions. These four clusters did not separate cleanly into dormant and nondormant populations, indicating that not all markers were tightly linked to dormancy. The strawhull groups were most distant from blackhull weedy Oryza sp. groups. These data indicate complex genetic control of the dormancy trait, as dormant individuals exhibited higher genetic diversity than nondormant individuals. Seed-dormancy trait contributes to population structure of weedy Oryza sp., but this influence is less than that of hull color. Markers unique to the dormant populations are good candidates for follow-up studies on the control of seed dormancy in weedy Oryza sp.


2020 ◽  
Vol 50 (3) ◽  
pp. 204-212
Author(s):  
Stalin Juan Vasquez GUIZADO ◽  
Muhammad Azhar NADEEM ◽  
Fawad ALI ◽  
Muzaffer BARUT ◽  
Ephrem HABYARIMANA ◽  
...  

ABSTRACT Rosewood, Aniba rosaeodora is an endangered species in Amazon forests and its natural stands have been heavily depleted due to over-exploitation for the cosmetic industry. This study aimed to investigate the genetic diversity and population structure of 90 rosewood accessions from eight localities in the Peruvian Amazon through 11 Inter Simple Sequence Repeats (ISSR) primers. The ISSR primers produced a sum of 378 bands, of which 375 (99.2%) were polymorphic, with an average polymorphism information content (PIC) value of 0.774. The mean effective number of alleles (Ne), Shannon informative index (I), gene diversity (He) and total gene diversity (Ht) were 1.485, 0.294, 0.453 and 0.252, respectively. Analysis of molecular variance (AMOVA) showed the presence of maximum variability within populations (88%). The Structure algorithm, neighbor joining and principal coordinate analysis (PCoA) grouped the 90 rosewood accessions into three main populations (A, B and C). Diversity indices at the inter-population level revealed a greater genetic diversity in population A, due to higher gene flow. The neighbor-joining analysis grouped populations A and B, while population C was found to be divergent at the inter population level. We concluded that population A reflects higher genetic diversity and should be prioritized for future management and conservation plans.


Agronomy ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 647 ◽  
Author(s):  
Ünal Karık ◽  
Muhammad Azhar Nadeem ◽  
Ephrem Habyarimana ◽  
Sezai Ercişli ◽  
Mehtap Yildiz ◽  
...  

Laurel is a medicinally important plant and is known to the world for its essential oil. Turkey is the main market in the laurel leaf trade by sharing about 90% of the world trade. Here we made an effort to elucidate genetic diversity and population structure of 94 Turkish laurel genotypes collected from 26 provinces and four geographical regions using inter-primer binding site (iPBS) retrotransposon markers. A total of 13 most polymorphic primers were selected which yielded 195 total bands, of which 84.10% were found polymorphic. Mean polymorphism information content (PIC) was (0.361) and diversity indices including mean effective number of alleles (1.36), mean Shannon’s information index (0.35) and overall gene diversity (0.22) revealed the existence of sufficient amount of genetic diversity in the studied plant material. Most diversity was found in genotypes collected from the Mediterranean region. Analysis of molecular variance (AMOVA) revealed that most of the variation (85%) in Turkish laurel germplasm is due to differences within populations. Model-based structure, principal coordinate analysis (PCoA) and neighbor-joining algorithms were found in agreement and clustered the studied germplasm according to their collection provinces and regions. This is a very first study exploring the genetic diversity and population structure of laurel germplasm using iPBS-retrotransposon marker system. We believe that information provided in this work will be helpful for the scientific community to take more interest in this forgotten but the medicinally important plant.


Forests ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 225 ◽  
Author(s):  
Fumei Liu ◽  
Zhou Hong ◽  
Daping Xu ◽  
Hongyan Jia ◽  
Ningnan Zhang ◽  
...  

Dalbergia odorifera T. Chen (Fabaceae) is a semi-deciduous tree species indigenous to Hainan Island in China. Due to its precious heartwood “Hualimu (Chinese)” and Chinese medicinal components “Jiangxiang”, D. odorifera is seriously threatened of long-term overexploitation and has been listed on the IUCN (International Union for Conservation of Nature’s) red list since 1998. Therefore, the elucidation of its genetic diversity is imperative for conservation and breeding purposes. In this study, we evaluated the genetic diversity of 42 wild D. odorifera trees from seven populations covering its whole native distribution. In total, 19 SSR (simple sequence repeat) markers harbored 54 alleles across the 42 samples, and the medium genetic diversity level was inferred by Nei’s gene diversity (0.36), observed (0.28) and expected heterozygosity (0.37). Among the seven wild populations, the expected heterozygosity (He) varied from 0.31 (HNQS) to 0.40 (HNCJ). The analysis of molecular variance (AMOVA) showed that only 3% genetic variation existed among populations. Moderate population differentiations among the investigated populations were indicated by pairwise Fst (0.042–0.115). Structure analysis suggested two clusters for the 42 samples. Moreover, the seven populations were clearly distinguished into two clusters from both the principal coordinate analysis (PCoA) and neighbor-joining (NJ) analysis. Populations from Haikou city (HNHK), Baisha autonomous county (HNBS), Ledong autonomous county (HNLD), and Dongfang city (HNDF) comprised cluster I, while cluster II comprised the populations from Wenchang city and Sansha city (HNQS), Changjiang autonomous county (HNCJ), and Wuzhisan city (HNWZS). The findings of this study provide a preliminary genetic basis for the conservation, management, and restoration of this endemic species.


2021 ◽  
Author(s):  
Lalit Arya ◽  
Ramya Kossery Narayanan ◽  
Anjali Kak ◽  
Chitra Devi Pandey ◽  
Manjusha Verma ◽  
...  

Abstract Morinda (Rubiaceae) is considerably recognized for its multiple uses viz. food, medicine, dyes, firewood, tools, oil, bio-sorbent etc. The molecular characterization of such an important plant would be very useful for its multifarious enhanced utilization. In the present study, 31 Morinda genotypes belonging to two different species Morinda citrifolia and Morinda tomentosa collected from different regions of India were investigated using Inter Simple Sequence Repeat (ISSR) markers. Fifteen ISSR primers generated 176 bands with an average of 11.7 bands per primer, of which (90.34%) were polymorphic. The percentage of polymorphic bands, mean Nei’s gene diversity, mean Shannon’s information index in Morinda tomentosa and Morinda citrifolia was [(69.89%, 30.68%); (0.21 ± 0.19, 0.12 ± 0.20); (0.32 ± 0.27 0.17 ± 0.28)] respectively, revealing higher polymorphism and genetic diversity in Morinda tomentosa compared to Morinda citrifolia. Structure, and UPGMA cluster analysis placed the genotypes into well-defined separate clusters belonging to two species Morinda tomentosa and Morinda citrifolia revealing the utility of ISSR markers in species differentiation. Distinct ecotypes within a particular species could also be inferred emphasizing the collection and conservation of Morinda genotypes from different regions, in order to capture the overall diversity of respective species. Further higher diversity of M. tomentosa must be advanced for its utilization in nutraceutical, nutritional and other nonfood purposes.


Sign in / Sign up

Export Citation Format

Share Document