Long-term reconstruction of the fire season in the mi×edwood boreal forest of Western Canada

1999 ◽  
Vol 77 (8) ◽  
pp. 1185-1188 ◽  
Author(s):  
E.A. Johnson ◽  
K. Miyanishi ◽  
N. O'Brien
1991 ◽  
Vol 67 (4) ◽  
pp. 342-348 ◽  
Author(s):  
T. Singh ◽  
E. E. Wheaton

Unmitigated global warming due to the enhanced greenhouse effect could have significant impacts on the boreal forest in interior western Canada. Increases in annual temperature of 3 to 7 °C are projected for Alberta under a 2 × CO2 scenario by 2030 – 2050 A.D. Such an unprecedented rate of change has many short- and long-term implications for forest management and for industries. As the boreal forest is highly sensitive to climatic changes, foresters need to develop a set of safe strategies to minimize the negative impacts and maximize the benefits of these changes.


2016 ◽  
Vol 96 (4) ◽  
pp. 347-350 ◽  
Author(s):  
Elwin G. Smith ◽  
H. Henry Janzen ◽  
Lauren Scherloski ◽  
Francis J. Larney ◽  
Benjamin H. Ellert

After 47 yr of no-till and reduced summerfallow at Lethbridge, Alberta, soil organic carbon concentration and stocks increased 2.14 g kg−1 and 2.22 Mg ha−1, respectively, in the surface 7.5 cm layer. These findings confirmed the conservation value of reducing tillage and summerfallow. The annual changes were relatively small.


2013 ◽  
Vol 13 (8) ◽  
pp. 21703-21763 ◽  
Author(s):  
A. Virkkula ◽  
J. Levula ◽  
T. Pohja ◽  
P. P. Aalto ◽  
P. Keronen ◽  
...  

Abstract. A prescribed burning of a boreal forest was conducted on 26 June 2009 in Hyytiälä, Finland, to study aerosol and trace gas emissions from wildfires and the effects of fire on soil properties in a controlled environment. A 0.8 ha forest near the SMEAR II was cut clear; some tree trunks, all tree tops and branches were left on the ground and burned. The amount of burned organic material was ~46.8 t (i.e., ~60 t ha−1). The flaming phase lasted 2 h 15 min, the smoldering phase 3 h. Measurements were conducted on the ground with both fixed and mobile instrumentation, and from a research aircraft. In the middle of the burning area, CO2 concentration peaks were around 2000–3000 ppm above the baseline and peak vertical flow velocities were 6 ± 3 m s−1, as measured a 10-Hz 3-D sonic anemometer placed within the burn area. Peak particle number concentrations were approximately 1–2 × 106 cm−3 in the plume at a distance of 100–200 m from the burn area. The geometric mean diameter of the mode with the highest concentration was at 80 ± 1 nm during the flaming phase and in the middle of the smoldering phase but at the end of the smoldering phase the largest mode was at 122 nm. In the volume size distributions geometric mean diameter of the largest volume mode was at 153 nm during the flaming phase and at 300 nm during the smoldering phase. The lowest single-scattering albedo of the ground-level measurents was 0.7 in the flaming-phase plume and ~0.9 in the smoldering phase. The radiative forcing efficiency was negative above dark surfaces, in other words, the particles cool the atmosphere. Elevated concentrations of several VOCs (including acetonitrile which is a biomass burning marker) were observed in the smoke plume at ground level. The forest floor (i.e., richly organic layer of soil and debris, characteristic of forested land) measurements showed that VOC fluxes were generally low and consisted mainly of monoterpenes, but a clear peak of VOC flux was observed after the burning. After one year, the fluxes were nearly stabilised close to the level before the burning. The clearcutting and burning of slash increased the total long-term CO2 release from the soil, altered the soil's physical, chemical and biological properties such as increased the available nitrogen contents of the soil, which in turn, affected the level of the long-term fluxes of greenhouse gases.


2021 ◽  
Vol 4 ◽  
Author(s):  
Emily Lloret ◽  
Sylvie Quideau

Boreal forest soils are highly susceptible to global warming, and in the next few decades, are expected to face large increases in temperature and transformative vegetation shifts. The entire boreal biome will migrate northward, and within the main boreal forest of Western Canada, deciduous trees will replace conifers. The main objective of our research was to assess how these vegetation shifts will affect functioning of soil microbial communities and ultimately the overall persistence of boreal soil carbon. In this study, aspen and spruce forest floors from the boreal mixedwood forest of Alberta were incubated in the laboratory for 67 days without (control) and with the addition of three distinct 13C labeled substrates (glucose, aspen leaves, and aspen roots). Our first objective was to compare aspen and spruce substrate utilization efficiency (SUE) in the case of a labile C source (13C-glucose). For our second objective, addition of aspen litter to spruce forest floor mimicked future vegetation shifts, and we tested how this would alter substrate use efficiency in the spruce forest floor compared to the aspen. Tracking of carbon utilization by microbial communities was accomplished using 13C-PLFA analysis, and 13C-CO2 measurements allowed quantification of the relative contribution of each added substrate to microbial respiration. Following glucose addition, the aspen community showed a greater 13C-PLFA enrichment than the spruce throughout the 67-day incubation. The spruce community respired a greater amount of 13C glucose, and it also had a much lower glucose utilization efficiency compared to the aspen. Following addition of aspen litter, in particular aspen leaves, the aspen community originally showed greater total 13C-PLFA enrichment, although gram positive phospholipid fatty acids (PLFAs) were significantly more enriched in the spruce community. While the spruce community respired a greater amount of the added 13C-leaves, both forest floor types showed comparable substrate utilization efficiencies by Day 67. These results indicate that a shift from spruce to aspen may lead to a greater loss of the aspen litter through microbial respiration, but that incorporation into microbial biomass and eventually into the more persistent soil carbon pool may not be affected.


2018 ◽  
Vol 32 (1-2) ◽  
pp. 1-13
Author(s):  
Christina I. Barrón-Ortiz ◽  
Matthew R. Sawchuk ◽  
Carmen Li ◽  
Christopher N. Jass

Abstract Water-saturated vertebrate remains (e.g., bone, antler, and ivory) are particularly challenging to stabilize for long-term storage, research, and analysis. These types of specimens are sensitive to damage caused by water loss, which frequently results in delamination, twisting, and cracking. The recovery of late Quaternary vertebrate remains from underwater areas of Cold Lake, western Canada, prompted us to conduct a series of analyses to better understand the preservation of the remains and their susceptibility to damage, and to test different conservation techniques to achieve successful drying. X-ray fluorescence analysis of a sample of specimens revealed that the remains have particularly high iron concentrations, a condition that might have contributed to weaken their structure, further compromising their integrity when drying. Additionally, we found that certain bone elements, such as long bones, are more susceptible to severe surface delamination than others, and as a result these specimens should be monitored more closely during their treatment. Of the four drying methods we tested, controlled air-drying produced the best results, followed by solvent-drying. In contrast, vacuum freeze-drying and vacuum freeze-drying with 20% v/v Acrysol WS-24 in water, an acrylic dispersion, while rapid, resulted in differing degrees of delamination and cracking.


2016 ◽  
Vol 92 (01) ◽  
pp. 57-61 ◽  
Author(s):  
Kevin J. Devito ◽  
Carl Mendoza ◽  
Richard M. Petrone ◽  
Nick Kettridge ◽  
James M. Waddington

The Utikuma Region Study Area (URSA) was initiated to develop spatially explicit modelling tools to predict the cumulative impacts of land use and natural disturbance on the Boreal Plains (BP) ecozone of the Western Boreal Forest. Research comprised several multi-year projects, spanning wet and dry climate periods that combined intensive detailed process studies at seven watersheds with extensive long-term ecohydrological and hydrogeological studies conducted across a 60-km transect representing the range of glaciated landforms characteristic of the sub-humid boreal forest in Alberta. These studies have improved our conceptual understanding and capacity to numerically model how climate and geology influence water and energy flow, and the hydrologic linkages and natural variability of the key processes influencing BP ecosystems. Eco-hydrogeological frameworks have been developed for designing, conducting, interpreting, and extrapolating research results for watershed management and construction across the Boreal Plain ecozone.


Author(s):  
Valentina Petrovna Gorbatenko ◽  
Marina Alexandrovna Volkova ◽  
Olga Vladimirovna Nosyreva ◽  
George Georgievich Zhuravlev ◽  
Irina Valerievna Kuzhevskaia

Current climate changes in Russia are attended by the increase in frequency of dangerous weather events. This chapter researches long-term variations of the dangerous weather's events on Western Siberia and to reveal general regularity, which can be associated with forest fires. The researches have been carried out for the territories of southeast of Western Siberia. The duration of the fire season increases due to climate change. This is due both to the earlier snowfall and the onset of the phenological spring, and to the increase in the duration of the thunderstorm period. Thunderstorms in Siberia are a much more frequent cause of forest fires (28%) than in other territories. Wildfire frequency is correlated with air temperature and drought anomalies.


2010 ◽  
Vol 19 (8) ◽  
pp. 1026 ◽  
Author(s):  
Christopher Carcaillet ◽  
Pierre J. H. Richard ◽  
Yves Bergeron ◽  
Bianca Fréchette ◽  
Adam A. Ali

The hypothesis that changes in fire frequency control the long-term dynamics of boreal forests is tested on the basis of paleodata. Sites with different wildfire histories at the regional scale should exhibit different vegetation trajectories. Mean fire intervals and vegetation reconstructions are based respectively on sedimentary charcoal and pollen from two small lakes, one in the Mixedwood boreal forests and the second in the Coniferous boreal forests. The pollen-inferred vegetation exhibits different trajectories of boreal forest dynamics after afforestation, whereas mean fire intervals have no significant or a delayed impact on the pollen data, either in terms of diversity or trajectories. These boreal forests appear resilient to changes in fire regimes, although subtle modifications can be highlighted. Vegetation compositions have converged during the last 1200 years with the decrease in mean fire intervals, owing to an increasing abundance of boreal species at the southern site (Mixedwood), whereas changes are less pronounced at the northern site (Coniferous). Although wildfire is a natural property of boreal ecosystems, this study does not support the hypothesis that changes in mean fire intervals are the key process controlling long-term vegetation transformation. Fluctuations in mean fire intervals alone do not explain the historical and current distribution of vegetation, but they may have accelerated the climatic process of borealisation, likely resulting from orbital forcing.


Sign in / Sign up

Export Citation Format

Share Document