Solid-State NMR at the University of Ottawa

2015 ◽  
Vol 93 (5) ◽  
pp. 485-491
Author(s):  
David L. Bryce

This article describes some highlights of the research which has been carried out in my laboratory at the University of Ottawa over the period covering 2005 to 2014. My research is in the general areas of solid-state NMR, applications of quantum chemistry, and biomolecular NMR. The format will follow that of my 2014 Canadian Society for Chemistry Keith Laidler Award presentation given in Vancouver in June 2014 at the 97th Canadian Chemistry Conference and Exhibition. Following a brief introduction, I will present some of our most interesting and exciting recent advances according to the following six themes: 1. Fundamental solid-state NMR. 2. Materials characterization and NMR crystallography. 3. Pharmaceuticals and polymorphism. 4. Non-covalent interactions: Halogen bonds. 5. Biomolecular NMR. 6. Software development.

2010 ◽  
Vol 66 (6) ◽  
pp. 615-621 ◽  
Author(s):  
Adriana Hangan ◽  
Gheorghe Borodi ◽  
Xenia Filip ◽  
Carmen Tripon ◽  
Cristian Morari ◽  
...  

The crystal structure solution of the title compound is determined from microcrystalline powder using a multi-technique approach that combines X-ray powder diffraction (XRPD) data analysis based on direct-space methods with information from 13C solid-state NMR (SSNMR), and molecular modelling using the GIPAW (gauge including projector augmented-wave) method. The space group is Pbca with one molecule in the asymmetric unit. The proposed methodology proves very useful for unambiguously characterizing the supramolecular arrangement adopted by the N-(5-ethyl-[1,3,4]-thiadiazole-2-yl)toluenesulfonamide molecules in the crystal, which consists of extended double strands held together by C—H...π non-covalent interactions.


2016 ◽  
Vol 52 (45) ◽  
pp. 7186-7204 ◽  
Author(s):  
Sharon E. Ashbrook ◽  
David McKay

DFT calculations are an important tool in assigning and interpreting NMR spectra of solids: we discuss recent developments and their future potential in the context of NMR crystallography.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6731
Author(s):  
Haruki Inoue ◽  
Yuga Yamashita ◽  
Yoshiki Ozawa ◽  
Toshikazu Ono ◽  
Masaaki Abe

Two hexanuclear paddlewheel-like clusters appending six carboxylic-acid pendants have been isolated with the inclusion of polar solvent guests: [Cu6(Hmna)6]·7DMF (1·7DMF) and [Ag6(Hmna)6]·8DMSO (2·8DMSO), where H2mna = 2-mercaptonicotininc acid, DMF = N,N’-dimethylformamide, and DMSO = dimethyl sulfoxide. The solvated clusters, together with their fully desolvated forms 1 and 2, have been characterized by FTIR, UV–Vis diffuse reflectance spectroscopy, TG-DTA analysis, and DFT calculations. Crystal structures of two solvated clusters 1·7DMF and 2·8DMSO have been unambiguously determined by single-crystal X-ray diffraction analysis. Six carboxylic groups appended on the clusters trap solvent guests, DMF or DMSO, through H-bonds. As a result, alternately stacked lamellar architectures comprising of a paddlewheel cluster layer and H-bonded solvent layer are formed. Upon UV illumination (λex = 365 nm), the solvated hexasilver(I) cluster 2·8DMSO gives intense greenish-yellow photoluminescence in the solid state (λPL = 545 nm, ΦPL = 0.17 at 298 K), whereas the solvated hexacopper(I) cluster 1·7DMF displays PL in the near-IR region (λPL = 765 nm, ΦPL = 0.38 at 298 K). Upon complete desolvation, a substantial bleach in the PL intensity (ΦPL < 0.01) is observed. The desorption–sorption response was studied by the solid-state PL spectroscopy. Non-covalent interactions in the crystal including intermolecular H-bonds, CH···π interactions, and π···π stack were found to play decisive roles in the creation of the lamellar architectures, small-molecule trap-and-release behavior, and guest-induced luminescence enhancement.


2011 ◽  
Vol 76 (3) ◽  
pp. 317-328 ◽  
Author(s):  
Zdravko Dzambaski ◽  
Milovan Stojanovic ◽  
Marija Baranac-Stojanovic ◽  
Dragica Minic ◽  
Rade Markovic

Configurational isomerization of stereo-defined 5-substituted and unsubstituted 2-alkylidene-4-oxothiazolidines 1 in the solid state, giving the Z/E mixtures in various ratios, was investigated by 1H-NMR spectroscopy, X-ray powder crystallography and differential scanning calorimetry (DSC). The Z/E composition can be rationalized in terms of non-covalent interactions, involving intermolecular and intramolecular hydrogen bonding and directional non-bonded 1,5-type S...O interactions. X-Ray powder crystallography, using selected crystalline (Z)-4- oxothiazolidine substrates, revealed transformation to the amorphous state during the irreversible Z ? E process. A correlation between previous results on the Z/E isomerization in solution and now in the solid state was established.


Sign in / Sign up

Export Citation Format

Share Document