Emissive and birefringent Hg(CN)2-based coordination polymer materials with very distorted coordination geometries

2018 ◽  
Vol 96 (2) ◽  
pp. 226-234 ◽  
Author(s):  
David Guan ◽  
John R. Thompson ◽  
Daniel B. Leznoff

New compounds and coordination polymers with highly polarizable metals (M = Hg, Pb) and 2,2′;6′2′-terpyridine (terpy) and 2,6-bis(benzimidazol-2-yl)pyridine (bbp) ligands have been synthesized and characterized for their photo-physical and optical properties. Hg(L)(CN)2 (L = terpy, bbp) exhibit π-stacking interactions, which form a supramolecular alignment of the planar terpy and bbp units. Pb(terpy)X2[Hg(CN)2]0.5 (X = Cl, Br) generate one-dimensional coordination polymers through bridging Hg(CN)2 linkers and hydrogen-bonding interactions. All of the metal centres have very distorted coordination geometries. Hg(L)(CN)2 (L = terpy, bbp) and Pb(terpy)Br2[Hg(CN)2]0.5 show terpy or bbp based emission. The materials are very birefringent, with Δn ranging from 0.37(2) to 0.45(2). The magnitude of the observed birefringence depends on the orientation of the highly polarizable terpy and bbp units in relation to the viewing axis of the crystals. These materials represent rare examples of multifunctional emissive and birefringent systems.

CrystEngComm ◽  
2020 ◽  
Vol 22 (5) ◽  
pp. 888-894 ◽  
Author(s):  
Ashkan Kianimehr ◽  
Kamran Akhbari ◽  
Jonathan White ◽  
Anukorn Phuruangrat

Two new Na and K coordination polymers with halogen bond, metallophilic and hydrogen bonding interactions were synthesized. These two compounds were synthesized sonochemically and solid-state conversions of them to each other were investigated.


2014 ◽  
Vol 70 (4) ◽  
pp. 359-363 ◽  
Author(s):  
Zouaoui Setifi ◽  
Fatima Setifi ◽  
Mohamed Saadi ◽  
Djamil-Azzeddine Rouag ◽  
Christopher Glidewell

In the title compound, [Cu(C2N3)2(C12H10N6)]nor [Cu(dca)2(abpt)]n, where abpt is 4-amino-3,5-bis(pyridin-2-yl)-4H-1,2,4-triazole and dca is the dicyanamide anion, the CuIIcentre is five-coordinate with an approximately square-pyramidal geometry. One of the two dicyanamide ligands is a terminal ligand, but the other one acts as a μ1,5-bridging ligand between pairs of CuIIcentres, so generating a one-dimensional coordination polymer. A combination of N—H...N and C—H...N hydrogen bonds, augmented by π–π stacking interactions, links the coordination polymer chains into a bilayer structure. Comparisons are made with some related CuIIcomplexes containing dca ligands and heteroaromatic co-ligands.


2010 ◽  
Vol 63 (3) ◽  
pp. 463 ◽  
Author(s):  
Chun-Sen Liu ◽  
Min Hu ◽  
Song-Tao Ma ◽  
Qiang Zhang ◽  
Li-Ming Zhou ◽  
...  

To explore the coordination possibilities of perylene-based ligands with a larger conjugated π-system, four ZnII, MnII, and CoII coordination polymers with perylene-3,4,9,10-tetracarboxylate (ptc) and the chelating 1,10-phenanthroline (phen) ligands were synthesized and characterized: {[Zn2(ptc)(phen)2](H2O)10}∞ (1), {[Zn3(ptc)(OH)2(phen)2](H2O)3}∞ (2), {[Mn(ptc)0.5(phen)(H2O)2](H2O)1.5}∞ (3), and {[Co(ptc)0.5(phen)(H2O)2](H2O)2.5}∞ (4). Structural analysis reveals that complexes 1 and 2 both take one-dimensional polymeric chain structures with dinuclear and trinuclear units as nodes, respectively, which are further extended via the accessorial secondary interchain interactions, such as C–H···O H-bonding or aromatic π···π stacking interactions, to give rise to the relevant higher-dimensional frameworks. Compound 3 has a two-dimensional sheet structure that is further assembled to form a three-dimensional framework by interlayer π···π stacking interactions. Complex 4 is a one-dimensional ribbon-like array structure that is interlinked by the co-effects of intermolecular π···π stacking and C–H···π supramolecular interactions, resulting in a higher-dimensional framework from the different crystallographic directions. Moreover, complexes 1–4 exhibit strong solid-state luminescence emissions at room temperature, which mainly originate from intraligand π→π* transitions of ptc.


2020 ◽  
Vol 75 (12) ◽  
pp. 1005-1009
Author(s):  
Geng Zhang ◽  
Xinzhao Xia ◽  
Jianhua Xu ◽  
Lixian Xia ◽  
Cong Wang ◽  
...  

AbstractA new one-dimensional Zn(II) coordination polymer, {[ZnCl2(BBM)]·CH3OH}n (2,2-(1,4-butanediyl)bis-1,3-benzimidazole [BBM]), has been obtained from the hydrothermal reaction of zinc chloride with the flexible bis-benzimidazole ligand BBM and characterized by single-crystal X-ray diffraction, elemental analysis, IR and UV–vis spectra. Structural analysis has revealed that the BBM ligand connects the Zn(II) atoms to form a square-wave chain, which is further extended into supramolecular layers through hydrogen bonds and π···π stacking interactions. Solid-state fluorescence investigations showed that the Zn(II) coordination polymer has an emission peak at 381 nm upon excitation at 330 nm, which is attributed to ligand-centered luminescence. It is only slightly red shifted as compared to the ligand but partially quenched due to the strong π···π stacking interactions.


2019 ◽  
Vol 75 (2) ◽  
pp. 178-188 ◽  
Author(s):  
Taraneh Hajiashrafi ◽  
Roghayeh Zekriazadeh ◽  
Keith J. Flanagan ◽  
Farnoush Kia ◽  
Antonio Bauzá ◽  
...  

The supramolecular chemistry of coordination compounds has become an important research domain of modern inorganic chemistry. Herein, six isostructural group IIB coordination compounds containing a 2-{[(2-methoxyphenyl)imino]methyl}phenol ligand, namely dichloridobis(2-{(E)-[(2-methoxyphenyl)azaniumylidene]methyl}phenolato-κO)zinc(II), [ZnCl2(C28H26N2O4)], 1, diiodidobis(2-{(E)-[(2-methoxyphenyl)azaniumylidene]methyl}phenolato-κO)zinc(II), [ZnI2(C28H26N2O4)], 2, dibromidobis(2-{(E)-[(2-methoxyphenyl)azaniumylidene]methyl}phenolato-κO)cadmium(II), [CdBr2(C28H26N2O4)], 3, diiodidobis(2-{(E)-[(2-methoxyphenyl)azaniumylidene]methyl}phenolato-κO)cadmium(II), [CdI2(C28H26N2O4)], 4, dichloridobis(2-{(E)-[(2-methoxyphenyl)azaniumylidene]methyl}phenolato-κO)mercury(II), [HgCl2(C28H26N2O4)], 5, and diiodidobis(2-{(E)-[(2-methoxyphenyl)azaniumylidene]methyl}phenolato-κO)mercury(II), [HgI2(C28H26N2O4)], 6, were synthesized and characterized by X-ray crystallography and spectroscopic techniques. All six compounds exhibit an infinite one-dimensional ladder in the solid state governed by the formation of hydrogen-bonding and π–π stacking interactions. The crystal structures of these compounds were studied using geometrical and Hirshfeld surface analyses. They have also been studied using M06-2X/def2-TZVP calculations and Bader's theory of `atoms in molecules'. The energies associated with the interactions, including the contribution of the different forces, have been evaluated. In general, the π–π stacking interactions are stronger than those reported for conventional π–π complexes, which is attributed to the influence of the metal coordination, which is stronger for Zn than either Cd or Hg. The results reported herein might be useful for understanding the solid-state architecture of metal-containing materials that contain M II X 2 subunits and aromatic organic ligands.


2009 ◽  
Vol 65 (6) ◽  
pp. o1225-o1225
Author(s):  
Lu-Tong Yuan ◽  
Hai Zhang ◽  
Zuo-Xiang Wang ◽  
Zhi-Rong Qu

In the molecule of the title compound, C19H15N5, the dihedral angles formed by the plane of the triazole ring with those of the 2-pyridyl, 4-pyridyl andp-tolyl rings are 28.12 (10), 34.62 (10) and 71.43 (9)°, respectively. The crystal structure is consolidated by C—H...π hydrogen-bonding interactions and by π–π stacking interactions, with a centroid–centroid distance of 3.794 (4) Å.


2017 ◽  
Vol 19 (18) ◽  
pp. 11474-11484 ◽  
Author(s):  
Mrinal Kanti Si ◽  
Anik Sen ◽  
Bishwajit Ganguly

This report reveals that hydrogen bonding interactions between the ligand and G-quadruplex can initiate an alternative binding motif to typical π-stacking interactions.


2017 ◽  
Vol 70 (12) ◽  
pp. 1263 ◽  
Author(s):  
Pradeep Kumar Muwal ◽  
Rajesh Kumar Chhatra ◽  
Shubhajit Das ◽  
Pramod S. Pandey

Molecular recognition properties are reported for novel bile acid-based receptors that incorporate 2,6-diaminopyridine as a recognition unit. Apart from hydrogen-bonding interactions, the bile acid receptors exhibit significant aromatic π-stacking interactions with the aromatic fused ring of the flavin derivative. These studies provide rationalisation for the differences in binding behaviour of bile acid receptors having differing aromatic arm lengths towards a flavin analogue.


2015 ◽  
Vol 68 (1) ◽  
pp. 113
Author(s):  
Min Chen ◽  
Zhuo-Wei Wang ◽  
Hui Zhao ◽  
Chun-Sen Liu

Three new ZnII coordination polymers, namely [Zn(ndc)]n (1), {[Zn(ndc)(bpe)]·1.25H2O}n (2), and {[Zn(ndc)(bpee)]·1.25H2O}n (3), were prepared based on in situ reaction of 1,2-naphthalenedicarboxylic anhydride (ndca) with two different 4,4′-bipyridyl-like bridging co-ligands, bpe and bpee (ndc = 1,2-naphthalenedicarboxylate, bpe = 1,2-bis(4-pyridyl)ethane, and bpee = trans-1,2-bis(4-pyridyl)ethylene). In 1, the ZnII and ndc ligands are directly involved in the polymeric frameworks, forming a 2D (43.63) layered network. Complexes 2 and 3 similarly consist of Zn2(ndc)2 binuclear units that are linked by bpe and bpee ligands, respectively, into a 2D (44.62) sheet. However, further analysis indicates that 2 and 3 feature the similar 2-fold interpenetrating structure linked via hydrogen bonding interactions for 2 and aromatic stacking interactions for 3. In addition, the resultant 2D→3D supramolecular frameworks of 2 and 3 are both constructed via aromatic stacking interactions. Also, the fluorescent and thermal properties of the complexes were investigated.


2014 ◽  
Vol 70 (5) ◽  
pp. 428-431
Author(s):  
Lei Guo ◽  
Jia-Qun Li ◽  
Yu-Ting Xie ◽  
Chu-Qin Lu ◽  
Jian-Zhong Wu

In the coordination polymer catena-poly[[[diaqua[5-carboxy-2-(pyridin-3-yl)-1H-imidazole-4-carboxylato-κ2 N 3,O 4]lead(II)]-μ-5-carboxy-2-(pyridin-3-yl)-1H-imidazole-4-carboxylato-κ3 N 3,O 4:N 2] dihydrate], {[Pb(C10H6N3O4)(H2O)2]·2H2O} n , the two 5-carboxy-2-(pyridin-3-yl)-1H-imidazole-4-carboxylate ligands have different coordination modes, one being terminal and the other bridging. The bridging ligand links PbII cations into one-dimensional coordination polymer chains. The structure is also stabilized by intra- and interchain π–π stacking interactions between the pyridine rings, resulting in the formation of a two-dimensional network. Extensive hydrogen-bonding interactions lead to the formation of a three-dimensional supramolecular network.


Sign in / Sign up

Export Citation Format

Share Document