A zinc(II) coordination polymer based on a flexible bis(benzimidazole) ligand: synthesis, crystal structure and fluorescence study

2020 ◽  
Vol 75 (12) ◽  
pp. 1005-1009
Author(s):  
Geng Zhang ◽  
Xinzhao Xia ◽  
Jianhua Xu ◽  
Lixian Xia ◽  
Cong Wang ◽  
...  

AbstractA new one-dimensional Zn(II) coordination polymer, {[ZnCl2(BBM)]·CH3OH}n (2,2-(1,4-butanediyl)bis-1,3-benzimidazole [BBM]), has been obtained from the hydrothermal reaction of zinc chloride with the flexible bis-benzimidazole ligand BBM and characterized by single-crystal X-ray diffraction, elemental analysis, IR and UV–vis spectra. Structural analysis has revealed that the BBM ligand connects the Zn(II) atoms to form a square-wave chain, which is further extended into supramolecular layers through hydrogen bonds and π···π stacking interactions. Solid-state fluorescence investigations showed that the Zn(II) coordination polymer has an emission peak at 381 nm upon excitation at 330 nm, which is attributed to ligand-centered luminescence. It is only slightly red shifted as compared to the ligand but partially quenched due to the strong π···π stacking interactions.

2018 ◽  
Vol 9 (3) ◽  
pp. 178-181 ◽  
Author(s):  
Leslaw Sieron ◽  
Agnieszka Czylkowska ◽  
Bartlomiej Rogalewicz

A new gadolinium(III) complex with 4,4’-bipyridine (4-bpy) and dibromoacetate ligand of general formula [Gd(4-bpy)(CBr2HCOO)3(H2O)]n, has been synthesized, crystallized and characterized by a single-crystal X-ray diffraction analysis. The gadolinium atom has an unsymmetrical eight-coordinate geometry, being coordinated by six oxygen atoms of dibromoacetate anions, one nitrogen atom of 4-bpy and one water molecule. The complex is a one-dimensional polymer as a result of dibromoacetate ligand bridging with the repeating monomeric units. There are π...π stacking interactions between the 4-bpy rings as well as O–H...O and O–H...N hydrogen bonds. Crystal Data for C16H13Br6GdN2O7 (Mw = 981.99 g/mol): triclinic, space group P-1 (no. 2), a = 9.7368(4) Å, b = 11.5416(4) Å, c = 11.7634(4) Å, α = 104.2750(10)°, β = 94.060(2)°, γ = 92.6900(10)°, V = 1275.08(8) Å3, Z = 2, T = 90 K, μ(CuKα) = 28.190 mm-1, Dcalc = 2.558 g/cm3, 8399 reflections measured (7.782° ≤ 2Θ ≤ 133.18°), 4006 unique (Rint = 0.0409, Rsigma = 0.0639) which were used in all calculations. The final R1 was 0.0527 (I > 2σ(I)) and wR2 was 0.1396 (all data).


2011 ◽  
Vol 66 (2) ◽  
pp. 119-124 ◽  
Author(s):  
Hong-Lin Zhu ◽  
Yue-Qing Zheng

A hydrothermal reaction of Co(Ac)2 ・ 4H2O, butane-1,2,3,4-tetracarboxylic acid (H4BTC), 1,10-phenanthroline (phen) and NaOH carried out at 160 °C yielded a new complex [Co2(H2O)2(phen)2(BTC)]. The complex has been characterized by single-crystal X-ray diffraction, IR spectroscopy, TG-DTA analyses, elemental analyses, powder X-ray diffraction, and magnetic measurements. The Co ions are linked by BTC4− anions into a chain, and hydrogen bonding and π-π stacking interactions result in the formation of a 3D (3,4,6)-connected supramolecular architecture with the Schläfli symbol (43.62.8)2(46.66.83)(63)2. The temperature dependence of the magnetic susceptibility of the compound follows a Curie-Weiss law χm = C/(T −Θ) with C = 4.18(4) cm3 mol−1 K and Θ = −1.43(5) K, and the magnetic behavior can be interpreted by means of a 1D chain Fisher model, where the magnetic superexchange is transmitted via π ···π stacking interactions between adjacent phen ligands, and the best fit results in J = −0.05 cm−1, and zJʹ = 0.21 cm−1.


2015 ◽  
Vol 71 (8) ◽  
pp. 679-682 ◽  
Author(s):  
Yu-Quan Feng ◽  
Yu-Long Hu ◽  
Hong-Wei Wang ◽  
Feng-Pu Cao

A new linear bismuth(III) coordination polymer,catena-poly[[chloridobismuth(III)]-μ3-1,10-phenanthroline-2,9-dicarboxylato-κ6O2:O2,N1,N10,O9:O9], [Bi(C14H6N2O4)Cl]n, has been obtained by an ionothermal method and characterized by elemental analysis, energy-dispersive X-ray spectroscopy, IR spectroscopy, thermal stability studies and single-crystal X-ray diffraction. The structure is constructed by Bi(C14H6N2O4)Cl fragments in which each BiIIIcentre is seven-coordinated by one Cl atom, four O atoms and two N atoms. The coordination geometry of the BiIIIcation is distorted pentagonal–bipyramidal (BiO4N2Cl), with one bridging carboxylate O atom and one Cl atom located in the axial positions. The Bi(C14H6N2O4)Cl fragments are further extended into a one-dimensional linear polymeric structureviasubsequent but different centres of symmetry (bridging carboxylate O atoms). Neighbouring linear chains are assembledviaweak C—H...O and C—H...Cl hydrogen bonds, forming a three-dimensional supramolecular architecture. Intermolecular π–π stacking interactions are observed, with centroid-to-centroid distances of 3.678 (4) Å, which further stabilize the structure. In addition, the solid-state fluorescence properties of the title coordination polymer were investigated.


2019 ◽  
Author(s):  
KAIKAI MA ◽  
Peng Li ◽  
John Xin ◽  
Yongwei Chen ◽  
Zhijie Chen ◽  
...  

Creating crystalline porous materials with large pores is typically challenging due to undesired interpen-etration, staggered stacking, or weakened framework stability. Here, we report a pore size expansion strategy by self-recognizing π-π stacking interactions in a series of two-dimensional (2D) hydrogen–bonded organic frameworks (HOFs), HOF-10x (x=0,1,2), self-assembled from pyrene-based tectons with systematic elongation of π-conjugated molecular arms. This strategy successfully avoids interpene-tration or staggered stacking and expands the pore size of HOF materials to access mesoporous HOF-102, which features a surface area of ~ 2,500 m2/g and the largest pore volume (1.3 cm3/g) to date among all reported HOFs. More importantly, HOF-102 shows significantly enhanced thermal and chemical stability as evidenced by powder x-ray diffraction and N2 isotherms after treatments in chal-lenging conditions. Such stability enables the adsorption of dyes and cytochrome c from aqueous media by HOF-102 and affords a processible HOF-102/fiber composite for the efficient photochemical detox-ification of a mustard gas simulant.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Xinzhao Xia ◽  
Lixian Xia ◽  
Geng Zhang ◽  
Yuxuan Jiang ◽  
Fugang Sun ◽  
...  

Abstract In this work, a new type of zinc(II) coordination polymer {[Zn(HIDC)(BBM)0.5]·H2O} n (Zn-CP) was synthesized using 4,5-imidazoledicarboxylic acid (H3IDC) and 2,2-(1,4-butanediyl)bis-1,3-benzimidazole (BBM) under hydrothermal conditions. Its structure has been characterized by infrared spectroscopy, elemental analysis and single crystal X-ray diffraction analysis. The Zn(II) ion is linked by the HIDC2− ligand to form a zigzag chain by chelating and bridging, and then linked by BBM to form a layered network structure. Adjacent layers are further connected by hydrogen bond interaction to form a 3-D supramolecular framework. The solid-state fluorescence performance of Zn-CP shows that compared with free H3IDC ligand, its fluorescence intensity is significantly enhanced.


Inorganics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 54
Author(s):  
Giacomo Manfroni ◽  
Simona S. Capomolla ◽  
Alessandro Prescimone ◽  
Edwin C. Constable ◽  
Catherine E. Housecroft

The isomers 4′-(4-(trifluoromethyl)phenyl)-4,2′:6′,4″-terpyridine (1), 4′-(3-(trifluoromethyl)phenyl)-4,2′:6′,4″-terpyridine (2), 4′-(4-(trifluoromethyl)phenyl)-3,2′:6′,3″-terpyridine (3), and 4′-(3-(trifluoromethyl)phenyl)-3,2′:6′,3″-terpyridine (4) have been prepared and characterized. The single crystal structures of 1 and 2 were determined. The 1D-polymers [Cu2(hfacac)4(1)2]n.2nC6H4Cl2 (Hhfacac = 1,1,1,5,5,5-hexafluoropentane-2,4-dione), [Cu(hfacac)2(2)]n.2nC6H5Me, [Cu2(hfacac)4(3)2]n.nC6H4Cl2, [Cu2(hfacac)4(3)2]n.nC6H5Cl, and [Cu(hfacac)2(4)]n.nC6H5Cl have been formed by reactions of 1, 2, 3 and 4 with [Cu(hfacac)2].H2O under conditions of crystal growth by layering and four of these coordination polymers have been formed on a preparative scale. [Cu2(hfacac)4(1)2]n.2nC6H4Cl2 and [Cu(hfacac)2(2)]n.2nC6H5Me are zig-zag chains and the different substitution position of the CF3 group in 1 and 2 does not affect this motif. Packing of the polymer chains is governed mainly by C–F...F–C contacts, and there are no inter-polymer π-stacking interactions. The conformation of the 3,2′:6′,3″-tpy unit in [Cu2(hfacac)4(3)2]n.nC6H4Cl2 and [Cu(hfacac)2(4)]n.nC6H5Cl differs, leading to different structural motifs in the 1D-polymer backbones. In [Cu(hfacac)2(4)]n.nC6H5Cl, the peripheral 3-CF3C6H4 unit is accommodated in a pocket between two {Cu(hfacac)2} units and engages in four C–Hphenyl...F–Chfacac contacts which lock the phenylpyridine unit in a near planar conformation. In [Cu2(hfacac)4(3)2]n.nC6H4Cl2 and [Cu(hfacac)2(4)]n.nC6H5Cl, π-stacking interactions between 4′-trifluoromethylphenyl-3,2′:6′,3″-tpy domains are key packing interactions, and this contrasts with the packing of polymers incorporating 1 and 2. We use powder X-ray diffraction to demonstrate that the assemblies of the coordination polymers are reproducible, and that a switch from a 4,2′:6′,4″- to 3,2′:6′,3″-tpy metal-binding unit is accompanied by a change from dominant C–F...F–C and C–F...H–C contacts to π-stacking of arene domains between ligands 3 or 4.


Author(s):  
Ahmet Karadag ◽  
Hümeyra Pasaoglu ◽  
Gökhan Kastas ◽  
Orhan Büyükgüngör

AbstractThe cyano-bridged heteronuclear coordination polymer of zinc(II)/nickel(II) has been prepared by N-(2-hydroxyethyl)-ethylendiamine (hydet-en), alternatively named 2-(2-aminoethylamino)-ethanol and characterised by IR and thermal analysis. In the bimetallic complex, the decomposition of hydet-en ligands is seen to be endothermic whereas that of the cyano ligands is found to be exothermic. The crystal structure of the complex has been determined by single-crystal X-ray diffraction. The crystal structure of the zinc(II)-nickel(II) complex consists of a one-dimensional polymeric chain –Zn(hydet-en)


Author(s):  
Jun-Xia Li ◽  
Tian Zhang ◽  
He-Jun Chen ◽  
Zhong-Xiang Du

Abstract A new binary ZnII coordination polymer, [Zn(2-cpa)(H2O)] n (2D-Zn) has been prepared by a 120 °C hydrothermal reaction of zinc(II) sulfate heptahydrate and 2-carboxy phenoxyacetic acid (2-H2cpa) in the presence of potassium hydroxide. Single-crystal X-ray diffraction analysis shows that the ZnII ion is located in a deformed ZnO6 octahedron bonded by one water and three 2-carboxy phenoxyacetate (2-cpa) ligands. The 2-cpa exhibits pentadentate double bridging chelate-μ 3 coordination mode and connects adjacent ZnII ions to generate a corrugated (4,4)-connected layer structure. The structures, conformation of 2-cpa and photoluminescence spectra for 2D-Zn have been carefully analyzed and compared with its two closely related compounds ̶ 1D [Zn(2-cpa)(H2O)] n (1D-Zn) and mononuclear [Zn(2-cpa)(H2O)3] (0D-Zn). The results showed that the conformation of 2-cpa in 2D-Zn has the maximum alteration and the corresponding fluorescence emission peak of 2D-Zn has the largest red-shift of 62 nm compared with that of free 2-H2cpa.


2018 ◽  
Vol 74 (3) ◽  
pp. 366-371 ◽  
Author(s):  
Wen Cui ◽  
Ruyu Wang ◽  
Xi Shu ◽  
Yu Fan ◽  
Yang Liu ◽  
...  

The interaction between the uranyl cation, (UO2)2+, and organic species is of interest due to the potential applications of the resulting compounds with regard to nuclear waste disposal and nuclear fuel reprocessing. The hydrothermal reaction of various uranyl compounds with flexible zwitterionic 1,1′-[1,4-phenylenebis(methylene)]bis(pyridin-1-ium-4-carboxylate) dihydrochloride (Bpmb·2HCl) in deionized water containing drops of H2SO4resulted in the formation of a novel two-dimensional uranyl coordination polymer, namely poly[tetraoxido{μ2-1,1′-[1,4-phenylenebis(methylene)]bis(pyridin-1-ium-4-carboxylate)}di-μ3-sulfato-diuranium(VI)], [(UO2)2(SO4)2(C20H16N2O4)]n, (1). Single-crystal X-ray diffraction reveals that this coordination polymer exhibits a layered arrangement and the (UO2)2+centre is coordinated by five equatorial O atoms. The structure was further characterized by FT–IR spectroscopy, powder X-ray diffraction (PXRD) and thermogravimetric analysis (TGA). The polymer shows high thermal stability up to 696 K. Furthermore, the photoluminescence properties of (1) has also been studied, showing it to exhibit a typical uranyl fluorescence.


2009 ◽  
Vol 74 (7) ◽  
pp. 755-764 ◽  
Author(s):  
Wen-Tong Chen ◽  
Xiao-Niu Fang ◽  
Qiu-Yan Luo ◽  
Ya-Ping Xu

A novel bimetallic 4f-3d metal-isonicotinic acid inorganic-organic hybrid complex [{Eu(NC5H4COOH)3(H2O)2}(1.5ZnCl4)?(2H2O)]n (1) was synthesized via a hydrothermal reaction and structurally characterized by single- crystal X-ray diffraction. Complex 1 crystallizes in the space group C2/c of the monoclinic system with eight formula units in a cell: a = 23.878(8) ?, b = 20.573(6) ?, c = 15.358(5) ?, ? = 127.276(5)?, V = 6003(3) ?3, C18H23Cl6EuN3O10Zn1.5, Mr = 904.11 g/mol, ? = 2.001 g/cm3, S = 1.077, ?(MoK?) = 3.846 mm-1, F(000) = 3536, R = 0.0270 and wR = 0.0672. Complex 1 has a characteristic, one-dimensional polycationic chain-like structure. A photoluminescent investigation revealed that the title complex displays intense emissions in the orange and red regions. The luminescence spectra show that the red emission is stronger than the orange emission. Optical absorption spectra of 1 revealed the presence of an optical gap of 3.56 eV.


Sign in / Sign up

Export Citation Format

Share Document