Framework geophysical modelling of granitoid versus supracrustal basement to the northeast Thelon Basin around the Kiggavik uranium camp, Nunavut

2013 ◽  
Vol 50 (6) ◽  
pp. 667-677 ◽  
Author(s):  
V. Tschirhart ◽  
W.A. Morris ◽  
C.W. Jefferson

The northeast Thelon Basin in the Kivalliq region of Nunavut is prospective for uranium deposits. Recently discovered basement-hosted, unconformity-associated prospects west of Kiggavik are restricted to deformed and metamorphosed Neoarchean psammitic enclaves of the Woodburn Lake group within 1.83 Ga Hudson granite and Martell syenite that together comprise the Shultz Lake intrusive complex (SLIC). The depth and geometry of the intrusive complex are relatively unknown as the geological constraints are poor; the drilling is sparse and of shallow depth extent as it was not targeting the basement but shallower multiply faulted and highly altered demagnetized zones. This study aims to constrain the geometry and context of the Shultz Lake intrusive complex with respect to the ore-hosting Neoarchean metasedimentary rocks and intersecting reactivated fault arrays through geophysical modelling of detailed aeromagnetic and gravity data integrated with new geological knowledge. By integrating detailed gravity, aeromagnetic, and structural geology observations measured along a series of transects with a petrophysical rock properties database, it is possible to derive constraints on the depth and thickness (200–300 m) of the SLIC. Quantitative comparison and integration of multiple hypothetical geometries favours a model wherein the SLIC, together with metasedimentary and older basement gneiss, has been structurally emplaced over the Neoarchean metasediments.

2017 ◽  
Vol 54 (8) ◽  
pp. 869-882 ◽  
Author(s):  
Régis Roy ◽  
Antonio Benedicto ◽  
Alexis Grare ◽  
Mickaël Béhaegel ◽  
Yoann Richard ◽  
...  

In unconformity-related uranium deposits, mineralization is associated with hydrothermal clay-rich alteration haloes that decrease the density of the host rock. In the Kiggavik uranium project, located in the eastern Thelon Basin, Nunavut (Canada), basement-hosted shallow deposits were discovered by drilling geophysical anomalies in the 1970s. In 2014, gravity data were inverted for the first time using the Geosoft VOXI Earth ModellingTM system to generate three-dimensional (3D) models to assist exploration in the Contact prospect, the most recent discovery at Kiggavik. A 3D unconstrained inversion model was calculated before drilling, and a model constrained by petrophysical data was computed after drilling. The unconstrained inversion provided a first approximation of the geometry and depth of a low-density body and helped to collar the discovery holes of the Contact mineralization. The constrained inversion was computed using density values measured on 315 core samples collected from 21 drill holes completed between 2014 and 2015. The constrained modelling highlights three shallower and smaller low-density bodies that match the geological interpretation and refines the footprint of the gravity anomalies in relation to the current understanding of the deposit. The 3D inversion of gravity data is a valuable tool to guide geologists in exploration of shallow basement-hosted uranium deposits associated with alteration haloes and to assess the deposit gravity geometry.


Geophysics ◽  
2020 ◽  
pp. 1-45
Author(s):  
Vitaliy Ogarko ◽  
Jérémie Giraud ◽  
Roland Martin ◽  
Mark Jessell

To reduce uncertainties in reconstructed images, geological information must be introduced in a numerically robust and stable way during the geophysical data inversion procedure. In the context of potential (gravity) data inversion, it is important to bound the physical properties by providing probabilistic information on the number of lithologies and ranges of values of possibly existing related rock properties (densities). For this purpose, we introduce a generalization of bounding constraints for geophysical inversion based on the alternating direction method of multipliers (ADMM). The flexibility of the proposed technique enables us to take into account petrophysical information as well as probabilistic geological modeling, when it is available. The algorithm introduces a priori knowledge in terms of physically acceptable bounds of model parameters based on the nature of the modeled lithofacies in the region under study. Instead of introducing only one interval of geologically acceptable values for each parameter representing a set of rock properties, we define sets of disjoint intervals using the available geological information. Different sets of intervals are tested, such as quasi-discrete (or narrow) intervals as well as wider intervals provided by geological information obtained from probabilistic geological modeling. Narrower intervals can be used as soft constraints encouraging quasi-discrete inversions. The algorithm is first applied to a synthetic 2D case for proof-of-concept validation and then to the 3D inversion of gravity data collected in the Yerrida basin (Western Australia). Numerical convergence tests show the robustness and stability of the bound constraints we apply, which is not always trivial for constrained inversions. This technique can be a more reliable uncertainty reduction method as well as an alternative to other petrophysically or geologically constrained inversions based on more classical “clustering” or Gaussian-mixture approaches.


2015 ◽  
Vol 52 (7) ◽  
pp. 495-518 ◽  
Author(s):  
J.M.J. Scott ◽  
T.D. Peterson ◽  
W.J. Davis ◽  
C.W. Jefferson ◽  
B.L. Cousens

We investigated the age and petrology of Paleoproterozoic granitic intrusions in the area of the Kiggavik uranium exploration camp, near the southeast margin of the Aberdeen subbasin of the Thelon Basin. A subset of these intrusions (e.g., the Lone Gull stock) is spatially associated with and mineralized by basement hosted, unconformity-related uranium deposits. Surface (outcrop) samples have field relations, textures, and compositions consistent with Hudson Suite granitoids and mixtures of monzogranite with minette. We obtained U–Pb (zircon) ages ranging from ca. 1818 to 1840 Ma, within the known range of the Hudson Suite and cogenetic minettes of the Baker Lake Group (1.80–1.84 Ga). Core samples of granitic rocks adjacent to mineralized zones are more complex and indicate an influence from the younger Nueltin Granite (Kivalliq Igneous Suite, ca. 1.77–1.73 Ga). One sample from the Lone Gull stock contains two zircon populations in texturally distinctive domains, one at 1806 ± 41 Ma and the other at 1748 ± 9.4 Ma. A porphyritic hypabyssal syenite below the Bong deposit yielded a U–Pb zircon age of 1837.8 ± 7.7 Ma and a U–Pb titanite age of 1758.5 ± 44 Ma. We recognize a Kivalliq-age overprint in the form of metasomatism and partial remelting or melt infiltration in the drill core samples, which is not evident at the surface and is consistent with the presence of a Nueltin Granite intrusive complex at depth. The geochemistry and primary igneous textures of the Bong syenite, including its euhedral zircons, resemble those of lava flows near the base of the Baker Lake Group, and we recognize a mixed magma (i.e., Martell Syenite) continuum between intrusive Hudson granitoids and minette with extrusive equivalents in the lower felsic minette member of the Christopher Island Formation.


Author(s):  
Richard M. Carruthers ◽  
John D. Cornwell

Lateral variations in the density and magnetization of the rocks within the crust give rise to "anomalies" in the Earth's gravity and magnetic fields. These anomalies can be measured and interpreted in terms of the geology both in a qualitative sense, by mapping out trends and changes in anomaly style, and quantitatively, by creating models of the subsurface which reproduce the observed fields. Such interpretations are generally less definitive in themselves than the results from seismic surveys (see chapter 12), but the data are widely available and can provide information in areas where other methods are ineffective or have not been applied. As the different geophysical techniques respond to specific rock properties such as density, magnetization, and acoustic velocity, the results are complementary, and a fully integrated approach to data collection and interpretation is generally more effective than the sum of its parts assessed on an individual basis. Gravity and magnetic data have been acquired, at least to a reconnaissance scale, over most of the world. In particular, the release into the public domain of satellite altimetry information (combined with improved methods of data processing) means that there is gravity coverage to a similar standard for most of the offshore region to within about 50 km of the coast. Magnetic anomalies recorded from satellites provide global coverage, but the high altitude of the observations means that only large-scale features extending over many 10s of kilometers are delineated. Reconnaissance aeromagnetic surveys with flight lines 10-20 km apart provide a lateral anomaly resolution similar to that of the satellite gravity data. Oceanographic surveys undertaken by a variety of academic and research institutions are another valuable source of data in remote regions offshore which supplement and extend the more detailed coverage obtained over the continental shelves, for example, by oil companies in areas of hydrocarbon interest. Surveys over land vary widely in terms of acquisition parameters and quality, but some form of national compilation is available from many countries. A number of possible applications of the potential field (i.e., gravity and magnetic) data follow from the terms set out by UNCLOS. Paragraph 4(b) of article 76 states, "In the absence of evidence to the contrary, the foot of the continental slope is to be determined as the point of maximum change in the gradient at its base" (italics added).


2020 ◽  
Vol 8 (4) ◽  
pp. SS31-SS45
Author(s):  
Daniel Minguez ◽  
E. Gerald Hensel ◽  
Elizabeth A. E. Johnson

Interpretation of recent, high-quality seismic data in the Gulf of Mexico (GOM) has led to competing hypotheses regarding the basin’s rift to drift transition. Some studies suggest a fault-controlled mechanism that ultimately results in mantle exhumation prior to seafloor spreading. Others suggest voluminous magmatic intrusion accommodates the terminal extension phase and results in the extrusion of volcanic seaward dipping reflectors (SDRs). Whereas it has been generally accepted that the plate motions between the rift and drift phases of the GOM are nearly perpendicular to each other, it has not been greatly discussed if the breakup mechanism plays a role in accommodating the transition in plate motion. We have developed a plate kinematic and crustal architecture hypothesis to address the transition from rift to drift in the GOM. We support the proposition of a fault-controlled breakup mechanism, in which slip on a detachment between the crust and mantle may have exhumed the mantle. However, we stress that this mechanism is not exclusive of synrift magmatism, though it does imply that SDRs observed in the GOM are not in this case indicative of a volcanic massif separating attenuated continental and normal oceanic crust. We support our hypothesis through a geometrically realistic 2D potential field model, which includes a magnetic seafloor spreading model constrained by recent published seismic data and analog rock properties. The 2D model suggests that magnetic anomalies near the continent-ocean transition may be related to removal of the lower continental crust during a phase of hyperextension prior to breakup, ending in mantle exhumation. The kinematics of breakup, derived from recent satellite gravity data and constrained by our spreading model and the global plate circuit, suggests that this phase of hyperextension accommodated the change in plate motion direction and a diachronous breakup across the GOM.


1970 ◽  
Vol 7 (3) ◽  
pp. 858-868 ◽  
Author(s):  
R. H. Wallis

The striking 'fit' of aeromagnetic and gravity data from the Precambrian of northwest Saskatchewan, combined with known and nearby analogous, geological relationships, suggests the presence of a northeast-trending belt, 250 × 20 miles (400 × 30 km), of early Proterozoic (?) metasedimentary rocks, probably magnetite-bearing meta-arkoses. This structural–sedimentary unit might have economic possibilities analogous to other northeast-striking, Precambrian, lower Proterozoic (?), metasedimentary belts of northern Saskatchewan, the Virgin River Belt, and the Wollaston Trend.


Geophysics ◽  
1991 ◽  
Vol 56 (10) ◽  
pp. 1533-1542 ◽  
Author(s):  
Peter H. McGrath

A new computer method was developed to derive values of dip and vertical extent, as well as location, for the truncated face of a horizontal‐plate model. The method is based on lateral offsets of the zero‐crossover point of the second horizontal derivative of an upward‐continued gravity profile. Application requires that the distance to the upper surface of the model be known. Numerical tests indicate useful results are obtained when both the length of the gravity profile, and the finite‐strike length of a model are at least three times the maximum depth extent of the model. Gaussian noise with a standard deviation of 1 mGal can be tolerated given an anomaly amplitude of 70 mGal. An example from the Trans‐Hudson Orogen of central Manitoba, Canada, indicates that the Kisseynew metasedimentary gneisses extend over a vertical distance of 16–18 km, and are separated from the Baldock batholith to the north by a near‐vertical boundary.


1987 ◽  
Vol 92 (B10) ◽  
pp. 10207-10222 ◽  
Author(s):  
David L. Williams ◽  
Gerda Abrams ◽  
Carol Finn ◽  
Daniel Dzurisin ◽  
Daniel J. Johnson ◽  
...  

Geophysics ◽  
1988 ◽  
Vol 53 (1) ◽  
pp. 8-20 ◽  
Author(s):  
Larry R. Lines ◽  
Alton K. Schultz ◽  
Sven Treitel

Geophysical inversion by iterative modeling involves fitting observations by adjusting model parameters. Both seismic and potential‐field model responses can be influenced by the adjustment of the parameters of the rock properties. The objective of this “cooperative inversion” is to obtain a model which is consistent with all available surface and borehole geophysical data. Although inversion of geophysical data is generally non‐unique and ambiguous, we can lessen the ambiguities by inverting all available surface and borehole data. This paper illustrates this concept with a case history in which surface seismic data, sonic logs, surface gravity data, and borehole gravity meter (BHGM) data are adequately modeled by using least‐squares inversion and a series of forward modeling steps.


Sign in / Sign up

Export Citation Format

Share Document