Cloning and expression of a trehalose synthase from Pseudomonas putida KT2440 for the scale-up production of trehalose from maltose

2014 ◽  
Vol 60 (9) ◽  
pp. 599-604 ◽  
Author(s):  
Tengfei Wang ◽  
Shiru Jia ◽  
Kun Dai ◽  
Hongjuan Liu ◽  
Ruiming Wang

Trehalose synthase (TreS) is considered to be a potential biocatalyst for trehalose production. We aimed to scale-up produce the TreS protein in Escherichia coli and further investigate the bioconversion capacity of TreS. The treS gene from Pseudomonas putida KT2440 was amplified and expressed in E. coli BL21 (DE3). The recombinant TreS showed a molecular mass of 67 kDa. Activity analysis suggested that TreS had optimal activity at a temperature of 55 °C, a pH of 7.4, with a substrate concentration of 30%. High-pressure liquid chromatography results indicated that this enzyme had the ability to catalyze 59% maltose into trehalose, with about 5.1% glucose as by-product. Purification analysis showed that trehalose crystals with a purity of 98% were obtained by cooling trehalose solution. The TreS from P. putida KT2440 might be a candidate for trehalose production. Further study is needed to improve the trehalose conversion rate.

2012 ◽  
Vol 78 (15) ◽  
pp. 5238-5246 ◽  
Author(s):  
Dongfei Han ◽  
Ji-Young Ryu ◽  
Robert A. Kanaly ◽  
Hor-Gil Hur

ABSTRACTA plasmid, pTA163, inEscherichia colicontained an approximately 34-kb gene fragment fromPseudomonas putidaJYR-1 that included the genes responsible for the metabolism oftrans-anethole to protocatechuic acid. Three Tn5-disrupted open reading frame 10 (ORF 10) mutants of plasmid pTA163 lost their abilities to catalyzetrans-anethole. Heterologously expressed ORF 10 (1,047 nucleotides [nt]) under a T7 promoter inE. colicatalyzed oxidative cleavage of a propenyl group oftrans-anethole to an aldehyde group, resulting in the production ofpara-anisaldehyde, and this gene was designatedtao(trans-anetholeoxygenase). The deduced amino acid sequence of TAO had the highest identity (34%) to a hypothetical protein ofAgrobacterium vitisS4 and likely contained a flavin-binding site. Preferred incorporation of an oxygen molecule from water intop-anisaldehyde using18O-labeling experiments indicated stereo preference of TAO for hydrolysis of the epoxide group. Interestingly, unlike the narrow substrate range of isoeugenol monooxygenase fromPseudomonas putidaIE27 andPseudomonas nitroreducensJin1, TAO fromP. putidaJYR-1 catalyzed isoeugenol,O-methyl isoeugenol, and isosafrole, all of which contain the 2-propenyl functional group on the aromatic ring structure. Addition of NAD(P)H to the ultrafiltered cell extracts ofE. coli(pTA163) increased the activity of TAO. Due to the relaxed substrate range of TAO, it may be utilized for the production of various fragrance compounds from plant phenylpropanoids in the future.


2012 ◽  
Vol 75 (3) ◽  
pp. 497-503 ◽  
Author(s):  
YANG LIU ◽  
MIRKO BETTI ◽  
MICHAEL G. GÄNZLE

This study evaluated the high pressure inactivation of Campylobacter jejuni, Escherichia coli, and poultry meat spoilage organisms. All treatments were performed in aseptically prepared minced poultry meat. Treatment of 19 strains of C. jejuni at 300 MPa and 30°C revealed a large variation of pressure resistance. The recovery of pressure-induced sublethally injured C. jejuni depended on the availability of iron. The addition of iron content to enumeration media was required for resuscitation of sublethally injured cells. Survival of C. jejuni during storage of refrigerated poultry meat was analyzed in fresh and pressure-treated poultry meat, and in the presence or absence of spoilage microbiota. The presence of spoilage microbiota did not significantly influence the survival of C. jejuni. Pressure treatment at 400 MPa and 40°C reduced cell counts of Brochothrix thermosphacta, Carnobacterium divergens, C. jejuni, and Pseudomonas fluorescens to levels below the detection limit. Cell counts of E. coli AW1.7, however, were reduced by only 3.5 log (CFU/g) and remained stable during subsequent refrigerated storage. The resistance to treatment at 600 MPa and 40°Cof E. coli AW1.7 was compared with Salmonella enterica, Shiga toxin–producing E. coli and nonpathogenic E. coli strains, and Staphylococcus spp. Cell counts of all organisms except E. coli AW 1.7 were reduced by more than 6 log CFU/g. Cell counts of E. coli AW1.7 were reduced by 4.5 log CFU/g only. Moreover, the ability of E. coli AW1.7 to resist pressure was comparable to the pressure-resistant mutant E. coli LMM1030. Our results indicate that preservation of fresh meat requires a combination of high pressure with high temperature (40 to 60°C) or other antimicrobial hurdles.


1985 ◽  
Vol 95 (3) ◽  
pp. 611-618
Author(s):  
Naomi Datta

SUMMARYThe study of Escherichia coli and its plasmids and bacteriophages has provided a vast body of genetical information, much of it relevant to the whole of biology. This was true even before the development of the new techniques, for cloning and analysing DNA, that have revolutionized biological research during the past decade. Thousands of millions of dollars are now invested in industrial uses of these techniques, which all depend on discoveries made in the course of academic research on E. coli. Much of the background of knowledge necessary for the cloning and expression of genetically engineered information, as well as the techniques themselves, came from work with this organism.


1989 ◽  
Vol 35 (4) ◽  
pp. 487-491 ◽  
Author(s):  
Paul H. Goodwin

Xylella fastidiosa DNA, partially digested with Sau3A, was ligated into the cosmid vector, pUCD615. Approximately 4500 ampicillin-resistant Escherichia coli colonies were obtained. The frequency of complementation of leucine auxotrophy in transfected E. coli indicated that the cosmid gene bank was representative of X. fastidiosa genomic DNA. Colonies were lysed directly onto nitrocellulose membranes using a thermo-inducible λ lysogen and screened for expression of X. fastidiosa antigens. Approximately 16.5% of a random sample of clones were found to express X. fastidiosa antigens as determined by Western blots. These proteins comigrated with proteins of X. fastidiosa and ranged in molecular weight from 10 000 to 160 000. Conjugation of several of the plasmids into Erwinia stewartii resulted in expression of the similar molecular weight cloned proteins with similar levels of expression as in E. coli.Key words: Xylella fastidiosa, Pierce's disease, immunological clone screening, thermo-inducible lysogeny.


2018 ◽  
Vol 102 (11) ◽  
pp. 4829-4841 ◽  
Author(s):  
Eugene M. Obeng ◽  
Tatjana Brossette ◽  
Clarence M. Ongkudon ◽  
Cahyo Budiman ◽  
Ruth Maas ◽  
...  

1996 ◽  
Vol 59 (4) ◽  
pp. 350-355 ◽  
Author(s):  
KRISTEL J. A. HAUBEN ◽  
ELKE Y. WUYTACK ◽  
CARINE C. F. SOONTJENS ◽  
CHRIS W. MICHIELS

Escherichia coli MG1655 suspensions in 10 mM phosphate buffer (pH 7.0) were subjected to high pressures in the range of 180 to 320 MPa for 15 min. Cell death was evident at 220 MPa and increased exponentially with pressure. Surviving populations were sublethally injured, as demonstrated by their reduced ability to form colonies on violet red bile glucose agar, a selective growth medium containing crystal violet and bile salts. During exposure to high pressure (> 180 MPa), cells were sensitive to lysozyme, nisin, and ethylenediaminetetraacetic acid (EDTA), as was apparent from an increased lethality of pressure in the presence of these agents. Sublethal injury in the surviving population was lower in the presence of nisin and lysozyme, but higher in the presence of EDTA. Combinations of EDTA with nisin or lysozyme present during pressure treatment increased lethality in an additive manner. However, the addition of lysozyme, nisin and/or EDTA to pressurized cell suspensions immediately after pressure treatment did not cause any viable count reduction. Finally, we observed leakage of the periplasmic enzyme β-lactamase from an ampicillin-resistant recombinant E. coli MG1655 under high pressure. These results suggest that high pressure transiently disrupts the permeability of the E. coli outer membrane for water-soluble proteins.


1991 ◽  
Vol 69 (9) ◽  
pp. 670-673
Author(s):  
Sharon Churchill ◽  
Perry Churchill

A rat liver bacteriophage λ expression library was probed using polyclonal antibodies raised to purified rat liver D-β-hydroxybutyrate dehydrogenase (BDH). A clone was selected that contained a 1.2-kb insert. The insert placed in an expression plasmid was utilized to transform Escherichia coli. These cells were shown to possess phosphatidylcholine-dependent BDH activity. Cells transformed with only the plasmid had no detectable BDH activity in the presence of phosphatidylcholine. The expressed activity in E. coli could be inhibited in a dose-dependent manner by BDH antiserum.Key words: D-β-hydroxybutyrate dehydrogenase, cloning, expression.


Sign in / Sign up

Export Citation Format

Share Document