Energies, wavelengths, lifetimes, E1, M1, E2, and M2 transitions rates for the sulfur isoelectronic sequence Fe XI, Nb XXVI–In XXXIV

2017 ◽  
Vol 95 (4) ◽  
pp. 393-401 ◽  
Author(s):  
K. Wang ◽  
S. Li ◽  
R. Si ◽  
C.Y. Chen ◽  
J. Yan ◽  
...  

Energies, wavelengths, lifetimes, oscillator strengths, electric dipole (E1), electric quadrupole (E2), magnetic dipole (M1), and magnetic quadrupole (M2) transition rates among the 42 fine structure levels belonging to the 3s23p4, 3s23p33d, and 3s3p5 configurations for S-like Fe and S-like ions with 41 ≤ Z ≤ 49 are calculated using the fully relativistic multiconfiguration Dirac–Fock (MCDF) method. In the calculations, contributions from correlations within the n = 6 complex, Breit interaction, and quantum electrodynamics effects are included. Detailed comparisons are made between the present results and the available experimental and other theoretical data. We found that our calculated energy levels generally agree within ≤0.5% with the experimentally compiled results, and the transition rates agree within ≤12% with other theoretical results for a majority of the transitions. These accurate theoretical data should be beneficial in fusion plasma research and astrophysical applications.

2019 ◽  
Vol 97 (4) ◽  
pp. 436-442
Author(s):  
A.K. Singh ◽  
Mayank Dimri ◽  
Dishu Dawra ◽  
Alok K.S. Jha ◽  
Man Mohan

An extended calculation of energy levels, radiative rates, and lifetimes are reported for sodium-like chromium. Extensive configuration interaction calculations have been performed using general-purpose relativistic atomic structure package (GRASP). The radiative rates, oscillator strengths, and line strengths are listed for all electric dipole (E1) transitions. However, for magnetic dipole (M1), electric quadrupole (E2), and magnetic quadrupole (M2) transitions, only radiative rates are listed. The importance of valence–valence (VV) and core–valence (CV) correlation effects in the calculation of energy levels have also been shown. To confirm the accuracy of the present results for energy levels by GRASP, independent calculations have been performed by using Flexible Atomic Code (FAC) and configuration interaction method (CIV3). The accuracy of the present levels, wavelengths, transition rates, and lifetimes are assessed by comparing them to available experimental and other theoretical results. We believe that our extensive results may be beneficial in fusion plasma research and astrophysical investigations and applications.


2014 ◽  
Vol 92 (3) ◽  
pp. 177-183 ◽  
Author(s):  
Man Mohan ◽  
Sunny Aggarwal ◽  
Narendra Singh

Energy levels, lifetimes, and wavefunction compositions have been calculated for all levels of odd parity 3s23p5 ground configuration as well as 3s3p6 and 3s23p43d even parity excited configurations in highly charged Cl-like tungsten ion. Transition probabilities, oscillator strengths, and line strengths for E1, E2, M1, and M2 transitions have been obtained using the fully relativistic multiconfiguration Dirac–Fock (MCDF) approach including the correlations within the n = 3 complex, some n = 3 → n = 4 single and double excitations and Breit and quantum electrodynamics effects. For comparison from our calculated energy levels, we have also calculated the energy levels by using the fully relativistic flexible atomic code (FAC). The validity of the method is assessed by comparison with previously published experimental and theoretical data. The excellent agreement observed between our calculated results and those obtained using different approaches confirm the accuracy of our results. Additionally, we have predicted some new atomic data for W57+ that are not available so far and may be important for plasma diagnostic analysis in fusion plasma.


2005 ◽  
Vol 16 (06) ◽  
pp. 951-968 ◽  
Author(s):  
MENG ZHANG ◽  
BING-CONG GOU

Variational calculations are carried out with a multiconfiguration-interaction wave function to obtain the relativistic energies of the 1s2 2 ln l 1 S (m)(n =2–6, m1–5) states for the beryllium isoelectronic sequence (Z =4–10). Relativistic corrections and the mass polarization effects are evaluated with the first-order perturbation theory. The identifications of the energy levels for 1s2 2 ln l 1 S (m)(n =2–6, m1–5) states in the Be-like ions are reported. The oscillator strengths, transition rates and wavelengths are also calculated. The calculated results are compared with other theoretical and experimental data in the literature.


Author(s):  
Miao Wu ◽  
Zhencen He

The spectral parameters (energy levels, wavelengths, transition probabilities, line strengths and oscillator strengths) of resonance lines for Ba VIII, La IX and Ce X have been performed using the multiconfiguration Dirac-Hartree-Fock method, the contributions of quantum electrodynamics and Breit interactions correction are taken into considered. The calculated results of energy levels and wavelengths are in good agreement with experimental values and other calculation. The number of energy levels and wavelengths considered is larger than that of any other experiment values and other calculations. The transition probabilities, line strengths and oscillator strengths are also calculated where no other theoretical results and experimental values are available.


2018 ◽  
Vol 96 (10) ◽  
pp. 1116-1137
Author(s):  
S.M. Hamasha ◽  
A. Almashaqba

Large-scale atomic calculations are carried out to produce data of atomic structure and transitions rates for Si-like Au ion (Au65+). Generated atomic data are essential for modeling of M-shell spectra of gold ions in Au plasma, and fusion research. Energy levels are calculated by applying two methods: the relativistic configuration interaction method (RCI) of the flexible atomic code (FAC) and the multi-reference many body perturbation theory method (MR-MBPT). Energy levels, oscillator strengths, and transition rates are calculated for transitions between excited and ground states from n = 3l to n′l′, where n′ = 4, 5, 6, and 7; and l and l′ are the proper angular momenta of shells n and n′, respectively. The electric dipole (E1), electric quadrupole (E2), electric octupole (E3), magnetic dipole (M1), magnetic quadrupole (M2), and magnetic octupole (M3) transitions are all considered in the calculations. Correlation effects, relativistic effects, and QED effects are also included in the calculations. The two methods yield comparable values of energy levels. Data of energy levels of low-lying states and data for inner shell transitions reported in this study demonstrate good agreement with published experimental and theoretical data.


2017 ◽  
Vol 95 (10) ◽  
pp. 950-957
Author(s):  
Arun Goyal ◽  
Rinku Sharma ◽  
A.K. Singh ◽  
Man Mohan

We report accurate calculations of W XLIV through application of multi-configuration Dirac–Fock wave functions. We have calculated the energies for the lowest 100 fine structure levels, transition wavelengths, radiative rates, oscillator strengths, and line strengths for electric (E1) and magnetic dipole (M1) transitions with the extended average level multi-configurational Dirac–Fock method in the General-Purpose Relativistic Atomic Structure Package (GRASP). We have taken into account the electron correlations, quantum electrodynamics (QED) and Breit corrections in our calculations. We have also performed parallel calculations with the flexible atomic code (FAC) to assess the accuracy of our calculations. This is a fully relativistic code that provides a variety of atomic parameters, and (generally) yields results for energy levels and radiative rates comparable to GRASP. Our calculated results match well with experimentally observed results that are obtained in ASDEX upgrade Tokamak. Additionally, we have also provided the line intensity ratios and electron density for W XLIV, which is useful and important in plasma diagnostics and modeling in future International Thermonuclear Experimental Reactor (ITER) experiments. We believe that our results would be beneficial in the areas of fusion plasma research and astrophysical investigations and applications.


Author(s):  
Miao Wu ◽  
Zhen-Cen He

The energy levels, transition probabilities, oscillator strengths, line strengths and wavelengths of Ge-like Zr, Nb and Tc ions have been calculated using the multiconfiguration Dirac-Hartree-Fock method. The Breit interactions and quantum electrodynamics correction were taken into account. The calculated values of energy levels and wavelengths have been compared with other theoretical calculations and available experimental values, good agreements are achieved for most of the energy levels and wavelengths calculated. The number of energy levels and wavelengths considered is larger than that of any other theoretical calculations. And the transition probabilities, line strengths are also given where no other theoretical results and experimental values are available.


2020 ◽  
Vol 637 ◽  
pp. A10 ◽  
Author(s):  
P. Rynkun ◽  
G. Gaigalas ◽  
P. Jönsson

Aims. We seek to present accurate and extensive transition data for the Zr III ion. These data are useful in many astrophysical applications. Methods. We used the multiconfiguration Dirac-Hartree-Fock and relativistic configuration interaction (RCI) methods, which are implemented in the general-purpose relativistic atomic structure package GRASP2018. The transverse-photon (Breit) interaction, vacuum polarization, and self-energy corrections are included in the RCI computations. Results. Energy spectra were calculated for the 88 lowest states in the Zr III ion. The root-mean-square deviation obtained in this study for computed energy spectra from the experimental data is 450 cm−1. Electric dipole (E1), magnetic dipole (M1), and electric quadrupole (E2) transition data, line strengths, weighted oscillator strengths, and transition rates are computed between the above states together with the corresponding lifetimes. The computed transition rates are smaller than the experimental rates and the disagreement for weaker transitions is much larger than the experimental error bars. The computed lifetimes agree with available experimental values within the experimental uncertainties.


Author(s):  
Dan Huang

Ab initio multiconfiguration Dirac-Fock calculations are performed for energy levels and lifetimes of the lowest 115 fine-structure levels generated from the 3s<sup>2</sup>3p<sup>6</sup>3d<sup>7</sup>, 3s<sup>2</sup>3p<sup>5</sup>3d<sup>8</sup>, 3s3p<sup>6</sup>3d<sup>8</sup>, 3s<sup>2</sup>3p<sup>4</sup>3d<sup>9</sup>, and 3s3p<sup>5</sup>3d<sup>9</sup> configurations of Hf XLVIII, Ta XLIX, Os LII, Pt LIV, and Au LV of fusion interest. Furthermore, radiative rates are calculated for all electric dipole, electric quadrupole, magnetic dipole, and magnetic quadrupole transitions. Electron correlation is treated through multiconfiguration expansions in the active space approximation. The Breit interaction and the leading quantum electrodynamic corrections, in the form of self-energy and vacuum polarization, are included. Another theoretical attempt, based on the Flexible Atomic Code is presented for the atomic structure to serve as an independent check of the MCDF values and the results show fairly good agreement with the MCDF ones. Comparisons are made with available results in the literature. The uncertainties of our energies and strong transition rates are found to be approximately 0.25% and 2%, respectively. The extended and consistent data presented in this study should be of notable interest in various fusion research.


2016 ◽  
Vol 94 (3) ◽  
pp. 283-289 ◽  
Author(s):  
Jian Zhang ◽  
Yan Sun ◽  
Cui Cui Sang ◽  
Shuo Yan ◽  
Wen Yi Li ◽  
...  

The energies, fine structure splittings, transition rates, and lifetimes of inner-shell excited sextet states 1s2s2p2nl, (n = 2–7; l = s, p, d) and 1s2p33p of the boron isoelectronic sequence (Z = 8–13) are investigated using the multi-configuration Rayleigh–Ritz variation method. The mass polarization effect and relativistic corrections are included by first-order perturbation theory. Configuration structures of the high-n inner-shell excited sextet series 6Se,o(m) and 6Pe,o(m) (m = 1–5) of boron-like Na6+ ion are assigned. The wavelengths and transition rates of electric-dipole transitions between 6Pe(m) and 6Po(m) (m = 1–5) states are calculated. The quantum electrodynamics (QED) effects and higher order relativistic corrections are also considered to obtain more accurate transition wavelengths. The predicted transition wavelengths agree well with the available theoretical and experimental data. The lifetimes for the inner-shell excited sextet states 6Pe(m) (m = 1–5) are also reported and discussed with the increase of nuclear charge number, Z. These theoretical data are useful for the identification of spectral lines in experiments and the design of XUV and soft X-ray lasers.


Sign in / Sign up

Export Citation Format

Share Document