Population genetic structure and assessment of allochronic divergence in the Macoun’s Arctic (Oeneis macounii) butterfly

2019 ◽  
Vol 97 (2) ◽  
pp. 121-130
Author(s):  
A.E. Gradish ◽  
N. Keyghobadi ◽  
F.A.H. Sperling ◽  
G.W. Otis

Patterns in the genetic variation of species can be used to infer their specific demographic and evolutionary history and provide insight into the general mechanisms underlying population divergence and speciation. The Macoun’s Arctic (Oeneis macounii (W.H. Edwards, 1885); MA) butterfly occurs across Canada and parts of the northern United States in association with jack pine (Pinus banksiana Lamb.) and lodgepole pine (Pinus contorta Douglas ex Loudon). MA’s current distribution is highly fragmented, and the extent of reproductive isolation among allopatric populations is unknown. Furthermore, although MA is biennial, adults emerge every year in some populations. These populations presumably consist of two alternate-year cohorts, providing the opportunity for sympatric divergence via allochronic isolation. Using mitochondrial DNA (mtDNA) and amplified fragment length polymorphism (AFLP) markers, we analyzed MA’s genetic structure to determine the current and historical role of allopatric and allochronic isolation in MA population divergence. Both markers revealed high diversity and a low, but significant, degree of spatial structure and pattern of isolation by distance. Phylogeographic structure was generally absent, with low divergence among mtDNA haplotypes. MA likely exhibits low dispersal and gene flow among most allopatric populations; however, there was no evidence of differentiation resulting from allochronic isolation for sympatric cohorts.

2021 ◽  
Author(s):  
◽  
Hayden Murray Smith

<p>This thesis primarily addresses the genetic population structure of blue cod (Parapercis colias) in the New Zealand Exclusive Economic Zone, within which approximately 2800 Tonnes of the endemic fish are harvested annually. Several regions with traditionally healthy blue cod stocks have recently experienced localised depletion due to over-exploitation. This highlights the importance for a clearer understanding of the genetic structure of the species in order to maximise the potential for the fishery to be managed sustainably. Also covered within this thesis are characteristics of the blue cod's mitochondrial genome, and development of a set of genetic tools that can improve the level of understanding for several important fisheries species in New Zealand waters. Chapter two focuses on the characterisation of the blue cod mitochondrial genome, with the use of second-generation sequencing providing the first fully documented sequence for this species. The blue cod mitochondrial genome is identical in organisation to several other documented fish species' mitochondrial genomes, with no unexpected results. Also dealt with in Chapter two is the development and implementation of a set of generic control region primers, designed primarily for use on commercially important inshore New Zealand fish species. Nine of the eleven species which the primer was tested on had the targeted region successfully amplified, though heteroplasmy may be present in at least four species. Chapter three reports the bulk of this research, with the phylogeographic structure of blue cod investigated. Samples were taken from the pectoral and pelvic fins of blue cod from 14 sites around New Zealand. A total of 475 sequences were taken from the hypervariable 5' end of the control region, with each sequence 491 bp in length. The null hypothesis of genetic homogeneity throughout their distribution was rejected, with significant differentiation observed between mainland New Zealand and Chatham Island samples. While pairwise differences between mainland New Zealand sampling sites was limited, a significant trend of isolation by distance was observed. A demographic population expansion occurred more steeply and more recently in mainland populations, with a slower growth curve in Chatham Island populations. With a trend of isolation by distance present between mainland sampling sites, it is suggested that further investigations are made, utilising genetic markers capable of resolving deeper patterns of genetic structure within the population (e.g. microsatellites, SNP's). Finally, Chapter four summarises and contextualises the results from the research components of this thesis, discussing management implications and potential threats to both the commercial and recreational blue cod fishery. A key area of focus for this section is the genetic and demographic risk that the population may face with continued targeting of larger individuals, given the biological trait of protogynous hermaphroditism in the species.</p>


2017 ◽  
Author(s):  
Md Rakeb-Ul Islam ◽  
Daniel J Schmidt ◽  
David A Crook ◽  
Jane M Hughes

Freshwater fishes often exhibit high genetic population structure due to the prevalence of dispersal barriers (e.g., waterfalls) whereas population structure in diadromous fishes tends to be weaker and driven by natal homing behaviour and/or isolation by distance. The Australian smelt (Retropinninae: Retropinna semoni) is a facultatively diadromous fish with a broad distribution spanning inland and coastal drainages of south-eastern Australia. Previous studies have demonstrated variability in population genetic structure and movement behaviour (potamodromy, facultative diadromy, estuarine residence) across the southern part of its geographic range. Some of this variability may be explained by the existence of multiple cryptic species. Here, we examined genetic structure of populations at the northern extent of the species’ distribution, using ten microsatellite loci and sequences of the mitochondrial cyt b gene. We tested the hypothesis that connectivity among rivers should be low due to a lack of dispersal via the marine environment, but high within rivers due to potamodromous behaviour. We investigated populations corresponding with two putative cryptic species, the South East Queensland (SEQ), and Central East Queensland (CEQ) lineages. In agreement with our hypothesis, highly significant overall FST values suggested that both groups exhibit very low dispersal among rivers (SEQ FST = 0.13; CEQ FST = 0.30). The two putative cryptic species, formed monophyletic clades in the mtDNA gene tree and among river phylogeographic structure was also evident within clades. Microsatellite data indicated that connectivity among sites within rivers was also limited, suggesting potamodromous behaviour does not homogenise populations at the within-river scale. Overall, northern groups in the smelt cryptic species exhibit higher among-river population structure and smaller geographic ranges than southern groups. These properties make northern Australian smelt populations potentially susceptible to future conservation threats, and we define eight genetically distinct management units to guide future conservation management.


2021 ◽  
Author(s):  
◽  
Hayden Murray Smith

<p>This thesis primarily addresses the genetic population structure of blue cod (Parapercis colias) in the New Zealand Exclusive Economic Zone, within which approximately 2800 Tonnes of the endemic fish are harvested annually. Several regions with traditionally healthy blue cod stocks have recently experienced localised depletion due to over-exploitation. This highlights the importance for a clearer understanding of the genetic structure of the species in order to maximise the potential for the fishery to be managed sustainably. Also covered within this thesis are characteristics of the blue cod's mitochondrial genome, and development of a set of genetic tools that can improve the level of understanding for several important fisheries species in New Zealand waters. Chapter two focuses on the characterisation of the blue cod mitochondrial genome, with the use of second-generation sequencing providing the first fully documented sequence for this species. The blue cod mitochondrial genome is identical in organisation to several other documented fish species' mitochondrial genomes, with no unexpected results. Also dealt with in Chapter two is the development and implementation of a set of generic control region primers, designed primarily for use on commercially important inshore New Zealand fish species. Nine of the eleven species which the primer was tested on had the targeted region successfully amplified, though heteroplasmy may be present in at least four species. Chapter three reports the bulk of this research, with the phylogeographic structure of blue cod investigated. Samples were taken from the pectoral and pelvic fins of blue cod from 14 sites around New Zealand. A total of 475 sequences were taken from the hypervariable 5' end of the control region, with each sequence 491 bp in length. The null hypothesis of genetic homogeneity throughout their distribution was rejected, with significant differentiation observed between mainland New Zealand and Chatham Island samples. While pairwise differences between mainland New Zealand sampling sites was limited, a significant trend of isolation by distance was observed. A demographic population expansion occurred more steeply and more recently in mainland populations, with a slower growth curve in Chatham Island populations. With a trend of isolation by distance present between mainland sampling sites, it is suggested that further investigations are made, utilising genetic markers capable of resolving deeper patterns of genetic structure within the population (e.g. microsatellites, SNP's). Finally, Chapter four summarises and contextualises the results from the research components of this thesis, discussing management implications and potential threats to both the commercial and recreational blue cod fishery. A key area of focus for this section is the genetic and demographic risk that the population may face with continued targeting of larger individuals, given the biological trait of protogynous hermaphroditism in the species.</p>


2020 ◽  
Author(s):  
Xu Zhang ◽  
Yanxia Sun ◽  
Jacob B. Landis ◽  
Jianwen Zhang ◽  
Linsen Yang ◽  
...  

SummaryInvestigating the interaction between environmental heterogeneity and local adaptation is critical to understand the evolutionary history of a species, providing the premise for studying the response of organisms to rapid climate change. However, for most species how exactly the spatial heterogeneity promotes population divergence and how genomic variations contribute to adaptive evolution remain poorly understood.We examine the contributions of geographical and environmental variables to population divergence of the relictual, alpine herb Circaeaster agrestis, as well as genetic basis of local adaptation using RAD-seq and plastome data.We detected significant genetic structure with an extraordinary disequilibrium of genetic diversity among regions, and signals of isolation-by-distance along with isolation-by-resistance. The populations were estimated to begin diverging in the late Miocene, along with a possible ancestral distribution of the Hengduan Mountains and adjacent regions. Both environmental gradient and redundancy analyses revealed significant association between genetic variation and temperature variables. Genome-environment association analyses identified 16 putatively adaptive loci related to biotic and abiotic stress resistance.Our genome wide data provide new insights into the important role of environmental heterogeneity in shaping genetic structure, and access the footprints of local adaptation in an ancient relictual species, informing conservation efforts.


2017 ◽  
Author(s):  
Md Rakeb-Ul Islam ◽  
Daniel J Schmidt ◽  
David A Crook ◽  
Jane M Hughes

Freshwater fishes often exhibit high genetic population structure due to the prevalence of dispersal barriers (e.g., waterfalls) whereas population structure in diadromous fishes tends to be weaker and driven by natal homing behaviour and/or isolation by distance. The Australian smelt (Retropinninae: Retropinna semoni) is a facultatively diadromous fish with a broad distribution spanning inland and coastal drainages of south-eastern Australia. Previous studies have demonstrated variability in population genetic structure and movement behaviour (potamodromy, facultative diadromy, estuarine residence) across the southern part of its geographic range. Some of this variability may be explained by the existence of multiple cryptic species. Here, we examined genetic structure of populations at the northern extent of the species’ distribution, using ten microsatellite loci and sequences of the mitochondrial cyt b gene. We tested the hypothesis that connectivity among rivers should be low due to a lack of dispersal via the marine environment, but high within rivers due to potamodromous behaviour. We investigated populations corresponding with two putative cryptic species, the South East Queensland (SEQ), and Central East Queensland (CEQ) lineages. In agreement with our hypothesis, highly significant overall FST values suggested that both groups exhibit very low dispersal among rivers (SEQ FST = 0.13; CEQ FST = 0.30). The two putative cryptic species, formed monophyletic clades in the mtDNA gene tree and among river phylogeographic structure was also evident within clades. Microsatellite data indicated that connectivity among sites within rivers was also limited, suggesting potamodromous behaviour does not homogenise populations at the within-river scale. Overall, northern groups in the smelt cryptic species exhibit higher among-river population structure and smaller geographic ranges than southern groups. These properties make northern Australian smelt populations potentially susceptible to future conservation threats, and we define eight genetically distinct management units to guide future conservation management.


2015 ◽  
Vol 66 (11) ◽  
pp. 1045 ◽  
Author(s):  
K. Hodges ◽  
S. Donnellan ◽  
A. Georges

Restriction to the freshwater environment plays a dominant role in the population genetic structure of freshwater fauna. In taxa with adaptations for terrestriality, however, the restrictions on dispersal imposed by drainage divides may be overcome. We investigate the mitochondrial phylogeographic structure of the eastern long-necked turtle (Chelodina longicollis), a widespread Australian freshwater obligate with strong overland dispersa\l capacity and specific adaptations to terrestriality. We predict that such characteristics make this freshwater species a strong candidate to test how life-history traits can drive gene flow and interbasin connectivity, overriding the constraining effects imposed by hydrological boundaries. Contrary to expectations, and similar to low-vagility freshwater vertebrates, we found two ancient mitochondrial haplogroups with clear east–west geographic partitioning either side of the Great Dividing Range. Each haplogroup is characterised by complex genetic structure, demographically stable subpopulations, and signals of isolation by distance. This pattern is overlaid with signatures of recent gene flow, likely facilitated by late Pleistocene and ongoing anthropogenic landscape change. We demonstrate that the divergent effects of landscape history can overwhelm the homogenising effects of life-history traits that connect populations, even in a highly vagile species.


1991 ◽  
Vol 138 (1) ◽  
pp. 156-170 ◽  
Author(s):  
David B. Wagner ◽  
Zhong-Xu Sun ◽  
Diddahally R. Govindaraju ◽  
Bruce P. Dancik

The Auk ◽  
2000 ◽  
Vol 117 (3) ◽  
pp. 651-662 ◽  
Author(s):  
Corinne Rabouam ◽  
Vincent Bretagnolle ◽  
Yves Bigot ◽  
Georges Periquet

Abstract We used DNA fingerprinting to assess genetic structure of populations in Cory's Shearwater (Calonectris diomedea). We analyzed mates and parent-offspring relationships, as well as the amount and distribution of genetic variation within and among populations, from the level of subcolony to subspecies. We found no evidence of extrapair fertilization, confirming that the genetic breeding system matches the social system that has been observed in the species. Mates were closely related, and the level of genetic relatedness within populations was within the range usually found in inbred populations. In contrast to previous studies based on allozymes and mtDNA polymorphism, DNA fingerprinting using microsatellites revealed consistent levels of genetic differentiation among populations. However, analyzing the two subspecies separately revealed that the pattern of genetic variation among populations did not support the model of isolation by distance. Natal dispersal, as well as historic and/or demographic events, probably contributed to shape the genetic structure of populations in the species.


Hydrobiologia ◽  
2020 ◽  
Author(s):  
Ruben Alexander Pettersen ◽  
Claudia Junge ◽  
Kjartan Østbye ◽  
Tor Atle Mo ◽  
Leif Asbjørn Vøllestad

Abstract Understanding how populations are structured in space and time is a central question in evolutionary biology. Parasites and their hosts are assumed to evolve together, however, detailed understanding of mechanisms leading to genetic structuring of parasites and their hosts are lacking. As a parasite depends on its host, studying the genetic structure of both parasite and host can reveal important insights into these mechanisms. Here, genetic structure of the monogenean parasite Gyrodactylus thymalli and its host the European grayling (Thymallus thymallus) was investigated in 10 tributaries draining into the large Lake Mjøsa in Norway. The population genetic structure of spawning grayling was studied using microsatellite genotyping, while G. thymalli was studied by sequencing a mitochondrial DNA gene (dehydrogenase subunit 5). Two main genetic clusters were revealed in grayling, one cluster comprising grayling from the largest spawning population, while the remaining tributaries formed the second cluster. For both taxa, some genetic differentiation was observed among tributaries, but there was no clear isolation-by-distance signature. The structuring was stronger for the host than for the parasite. These results imply that moderate to high levels of gene flow occur among the sub-populations of both taxa. The high parasite exchange among tributaries could result from a lack of strong homing behavior in grayling as well as interactions among individual fish outside of the spawning season, leading to frequent mixing of both host and parasite.


1998 ◽  
Vol 25 (6) ◽  
pp. 533-540 ◽  
Author(s):  
A. Rodriguez-Larralde ◽  
C. Scapoli ◽  
M. Beretta ◽  
C. Nesti ◽  
E. Mamolini ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document