Calcium signalling in early divergence of Metazoa: mechanisms involved in the control of muscle-like cell contraction in Hydra plagiodesmica

2019 ◽  
Vol 97 (9) ◽  
pp. 812-824 ◽  
Author(s):  
María Eugenia Alzugaray ◽  
María Victoria Gavazzi ◽  
Jorge Rafael Ronderos

Our laboratory has previously examined the effect of neuropeptides on the activity of the hypostome of the hydra Hydra plagiodesmica Dioni, 1968 (Cnidaria: Hydrozoa). These results showed that the hypostome, a structure extruded during feeding, responds to myoregulatory peptides and that this mechanism might be regulated by changes in the cytosolic levels of calcium (Ca2+). We analyse now the ways in which Ca2+ modulates hypostome activity during feeding. The use of calcium chelators confirms that Ca2+ is relevant in inducing hypostome extrusion. The assay of compounds that modulate the activity of Ca2+ channels in the endoplasmic reticulum suggests that, beyond the extracellular influx of calcium, intracellular sources of the ion are involved and might include both ryanodine receptors (RyR) and the inositol 1,4,5-trisphosphate receptor (IP3R). Bioinformatic searches based on sequences of RyR and IP3R of humans (Homo sapiens Linnaeus, 1758) show that IP3Rs are present in all groups analysed, including Fungi and Choanoflagellata. Although H. plagiodesmica responds to caffeine and ryanodine, which are known to modulate RyRs, this family of receptors seems not to be predicted in Cnidaria, suggesting that this phylum either lacks these kinds of channels or that they possess a different structure compared with those possessed by other Metazoa.

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Matias Wagner ◽  
Daniel P. S. Osborn ◽  
Ina Gehweiler ◽  
Maike Nagel ◽  
Ulrike Ulmer ◽  
...  

Abstract Alterations of Ca2+ homeostasis have been implicated in a wide range of neurodegenerative diseases. Ca2+ efflux from the endoplasmic reticulum into the cytoplasm is controlled by binding of inositol 1,4,5-trisphosphate to its receptor. Activated inositol 1,4,5-trisphosphate receptors are then rapidly degraded by the endoplasmic reticulum-associated degradation pathway. Mutations in genes encoding the neuronal isoform of the inositol 1,4,5-trisphosphate receptor (ITPR1) and genes involved in inositol 1,4,5-trisphosphate receptor degradation (ERLIN1, ERLIN2) are known to cause hereditary spastic paraplegia (HSP) and cerebellar ataxia. We provide evidence that mutations in the ubiquitin E3 ligase gene RNF170, which targets inositol 1,4,5-trisphosphate receptors for degradation, are the likely cause of autosomal recessive HSP in four unrelated families and functionally evaluate the consequences of mutations in patient fibroblasts, mutant SH-SY5Y cells and by gene knockdown in zebrafish. Our findings highlight inositol 1,4,5-trisphosphate signaling as a candidate key pathway for hereditary spastic paraplegias and cerebellar ataxias and thus prioritize this pathway for therapeutic interventions.


2006 ◽  
Vol 34 (3) ◽  
pp. 351-355 ◽  
Author(s):  
G.A. Rutter

A number of studies in recent years have demonstrated that the ER (endoplasmic reticulum) makes intimate contacts with mitochondria, the latter organelles existing both as individual organelles and occasionally as a more extensive interconnected network. Demonstrations that mitochondria take up Ca2+ more avidly upon its mobilization from the ER than when delivered to permeabilized cells as a buffered solution also indicate that a shielded conduit for Ca2+ may exist between the two organelle types, perhaps comprising the inositol 1,4,5-trisphosphate receptor and mitochondrial outer membrane proteins including the VDAC (voltage-dependent anion channel). Although the existence of such intracellular ER–mitochondria ‘synapses’, or of an ER–mitochondria Ca2+ ‘translocon’, is an exciting idea, more definitive experiments are needed to test this possibility.


2021 ◽  
Vol 67 (4) ◽  
pp. 37-43
Author(s):  
V.M. Shkryl ◽  
◽  
T.G. Turytska ◽  
V.A. Yavorsky ◽  
V.P. Lyashenko ◽  
...  

The effects of long-lasting high concentration coffee and caffeine diets on calcium mobilization in rat hippocampal neurons were studied. Changes in the basal calcium level in the hippocampal neurons of control and experimental rats kept on a coffee or caffeine diet were measured. We also recorded the changes in the Ca2+ transients’ amplitude evoked by membrane depolarization or emptying the Ca2+ depot of the endoplasmic reticulum (ER) induced by caffeine activator of the ryanodine receptors. In rats on a coffee or caffeine diet, the basal Ca2+ level was increased by 7.4% and 11%, respectively, compared to control animals. In these groups, the amplitude of Ca2+ transients increased by 70% and 90%, respectively, of the basal level in response to the membrane depolarization. In the same groups, the amount of Ca2+ released from the ER was increased by two and three times, respectively, compared to the control after activation of ryanodine receptors. We concluded that long-term coffee and caffeine diets in rats cause a significant disruption of the hippocampal neurons’ endoplasmic reticulum function. The diets evoke an increase in Ca2+ concentration in the neurons and an excessive release of Ca2+ in response to excitation. The latter can lead to increased excitability of neurons and their further death from excessive Ca2+ levels.


2015 ◽  
Vol 290 (34) ◽  
pp. 20880-20892 ◽  
Author(s):  
Hongwei Ma ◽  
Michael R. Butler ◽  
Arjun Thapa ◽  
Josh Belcher ◽  
Fan Yang ◽  
...  

Photoreceptor cyclic nucleotide-gated (CNG) channels play a pivotal role in phototransduction. Mutations in the cone CNG channel subunits CNGA3 and CNGB3 are associated with achromatopsia and cone dystrophies. We have shown endoplasmic reticulum (ER) stress-associated apoptotic cone death and increased phosphorylation of the ER Ca2+ channel inositol 1,4,5-trisphosphate receptor 1 (IP3R1) in CNG channel-deficient mice. We also presented a remarkable elevation of cGMP and an increased activity of the cGMP-dependent protein kinase (protein kinase G, PKG) in CNG channel deficiency. This work investigated whether cGMP/PKG signaling regulates ER stress and IP3R1 phosphorylation in CNG channel-deficient cones. Treatment with PKG inhibitor and deletion of guanylate cyclase-1 (GC1), the enzyme producing cGMP in cones, were used to suppress cGMP/PKG signaling in cone-dominant Cnga3−/−/Nrl−/− mice. We found that treatment with PKG inhibitor or deletion of GC1 effectively reduced apoptotic cone death, increased expression levels of cone proteins, and decreased activation of Müller glial cells. Furthermore, we observed significantly increased phosphorylation of IP3R1 and reduced ER stress. Our findings demonstrate a role of cGMP/PKG signaling in ER stress and ER Ca2+ channel regulation and provide insights into the mechanism of cone degeneration in CNG channel deficiency.


Sign in / Sign up

Export Citation Format

Share Document