Arenigian (Early Ordovician) sea-level history and the response of conodont communities, western Newfoundland

2004 ◽  
Vol 41 (7) ◽  
pp. 843-865 ◽  
Author(s):  
Shunxin Zhang ◽  
Christopher R Barnes

Four cluster analyses were performed, which recognized 17 conodont communities in the Arenigian (Lower Ordovician) of western Newfoundland. The analyses include 69 598 identifiable conodont specimens recovered from 153 conodont-bearing samples from four stratigraphical sections representing the environmental settings of the platform, upper proximal slope, lower proximal slope, and distal slope. The distribution of conodont communities along the platform to slope environmental gradient shows that sea-level changes simultaneously affected the development and replacement of the conodont communities in the different facies. The pattern of change in conodont communities allows an interpretation of sea-level change that is correlated precisely into the detailed graptolite biozonation. A gradual transgression lasted most of Tetragraptus approximatus Zone time, which was followed by a brief regression; a transgression–regression cycle occurred in the T. akzharensis Zone time; a major transgression caused a highstand during the entire Pendeograptus fruticosus Zone time, which was followed by a major regression in the early Didymograptus bifidus Zone time; Isograptus victoriae lunatus Zone time included repetitive oscillations of sea level; a severe regression in the earliest I. i. victoriae Zone time was represented by the St. George unconformity on the platform and the Bed 12 megaconglomerate on the slope, reaching the lowest sea level during the I. i. maximus Zone time. The Arenigian sea-level curve developed by this study only partly agrees with that from the Baltic region and central Australia based on trilobite communities.

Author(s):  
Katarzyna Pajak

Regional sea level changes occur at different time scales. Global warming of the oceans, glacial and polar ice melting and meteorological or hydrological factors are major contributors to long-term sea level rise. In the recent years, a lot of attention has been paid to research concerning sea level change and seasonal fluctuations. The main objective of this paper was to determine the seasonal variability in the Baltic Sea level using satellite altimetry data for the period 1 January 2010 – 31 December 2014. The ANOVA analysis of variance was used in the research in order to estimate seasonal fluctuations. This study focused on investigate the monthly and annual amplitude in sea level anomalies over a given time period. The results from research showed that the amplitudes of fluctuations are the highest in winter and the smallest in summer in three analyzed points of the Baltic Sea. The results can bring valuable information about ongoing aspects in sea level changes, as a way of tracking climate change.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Yusuke Yokoyama ◽  
Anthony Purcell

AbstractPast sea-level change represents the large-scale state of global climate, reflecting the waxing and waning of global ice sheets and the corresponding effect on ocean volume. Recent developments in sampling and analytical methods enable us to more precisely reconstruct past sea-level changes using geological indicators dated by radiometric methods. However, ice-volume changes alone cannot wholly account for these observations of local, relative sea-level change because of various geophysical factors including glacio-hydro-isostatic adjustments (GIA). The mechanisms behind GIA cannot be ignored when reconstructing global ice volume, yet they remain poorly understood within the general sea-level community. In this paper, various geophysical factors affecting sea-level observations are discussed and the details and impacts of these processes on estimates of past ice volumes are introduced.


2009 ◽  
Vol 46 (6) ◽  
pp. 403-423 ◽  
Author(s):  
Karem Azmy ◽  
Denis Lavoie

The Lower Ordovician St. George Group of western Newfoundland consists mainly of shallow-marine-platform carbonates (∼500 m thick). It is formed, from bottom to top, of the Watts Bight, Boat Harbour, Catoche, and Aguathuna formations. The top boundary of the group is marked by the regional St. George Unconformity. Outcrops and a few cores from western Newfoundland were sampled at high resolution and the extracted micritic materials were investigated for their petrographic and geochemical criteria to evaluate their degree of preservation. The δ13C and δ18O values of well-preserved micrite microsamples range from –4.2‰ to 0‰ (VPDB) and from –11.3‰ to –2.9‰ (VPDB), respectively. The δ13Ccarb profile of the St. George Group carbonates reveals several negative shifts, which vary between ∼2‰ and 3‰ and are generally associated with unconformities–disconformities or thin shale interbeds, thus reflecting the effect of or link with significant sea-level changes. The St. George Unconformity is associated with a negative δ13Ccarb shift (∼2‰) on the profile and correlated with major lowstand (around the end of Arenig) on the local sea-level reconstruction and also on those from the Baltic region and central Australia, thus suggesting that the St. George Group Unconformity might have likely had an eustatic component that contributed to the development–enhancement of the paleomargin. Other similar δ13Ccarb shifts have been recorded on the St. George profile, but it is hard to evaluate their global extension due to the low resolution of the documented global Lower Ordovician (Tremadoc – middle Arenig) δ13Ccarb profile.


2021 ◽  
Author(s):  
Kathrine Maxwell ◽  
Hildegard Westphal ◽  
Alessio Rovere

<p>The Last Interglacial (LIG), as well as other warmer periods in the Earth’s geologic history, provides an analogue for predicted warming conditions in the near future. Analysis of sea-level indicators during this period is important in constraining regional drivers of relative sea-level change (RSL) and in modeling future trajectories of sea-level rise. In southeast Asia, several studies have been done to examine LIG sea-level indicators such as coral reef terraces and tidal notches. A synthesis of the state-of-the-art of the LIG RSL indicators in the region, meanwhile, has yet to be done. We reviewed over 50 published works on the LIG RSL indicators in southeast Asia and used the framework of the World Atlas of Last Interglacial Shorelines (WALIS) in building a standardized database of previously published LIG RSL indicators in the region. In total, we identified 38 unique RSL indicators and inserted almost 140 ages in the database. Available data from Indonesia, the Philippines, and East Timor points to variable elevation of sea-level indicators during the LIG highlighting the complex tectonic setting of this region. Variable uplift rates (from as low as 0.02 to as high as 1.1 m/ka) were reported in the study areas echoing various collision and subduction processes influencing these sites. Although several age constraints and elevation measurements have been provided by these studies, more data is still needed to shed more light on the RSL changes in the region. With this effort under the WALIS framework, we hope to identify gaps in the LIG RSL indicators literature in SE Asia and recognize potential areas that can be visited for future work. We also hope that this initiative will help us further understand the different drivers of past sea-level changes in SE Asia and will provide inputs for projections of sea-level change in the future.</p>


2020 ◽  
Author(s):  
Martina Conti ◽  
Martin Bates ◽  
Natasha Barlow ◽  
Richard Preece ◽  
Kirsty Penkman ◽  
...  

<p>Targeted analysis of organic matter in soils and sediments is useful for evaluating past environmental conditions, as specific compounds may be directly linked to organisms and hence to the conditions in which they inhabited the environment.  Variations in molecular fossil distributions have become a powerful tool for understanding changes in palaeoclimate conditions.  This work uses molecular fossils to give an insight into the impact of transgressive events on primary producers inhabiting the studied basin, and hence a more detailed record of sea-level change.</p><p>The cores studied consisted of unconsolidated immature sediments from the mid-late Pleistocene (< 500,000 years) and the Holocene.  Molecular fossils, such as chlorophyll pigments and lipids, exhibit fluctuations as a response to changes in palaeoenvironmental conditions, providing a useful marker for sea-level changes.  Fluctuations in the pigment and <em>n</em>-alkane distribution reflect changes in primary producer activity, while the GDGT-based index of branched and isoprenoid tetraether lipids (BIT) differentiates between terrigenous and marine organic matter inputs.  Lipids were analysed by GC-FID and HPLC-MS while analysis of chlorophyll pigments was carried out using a new UHPLC-DAD method.</p><p>The results from biomarker analyses show excellent time-resolved agreement with previous lithological and ecological studies, but enabled a more sensitive response of different primary producers to changing conditions to be observed.  The molecular fossils were able to detect the onset and cessation of the studied transgressions earlier than it was possible with microfossil evidence.  Linking the pigment and lipid record with more secure dating will enable a more accurate record of Quaternary relative sea-level change.</p>


1999 ◽  
Vol 26 (3) ◽  
pp. 169-178 ◽  
Author(s):  
E.A. BALDINA ◽  
J. DE LEEUW ◽  
A.K. GORBUNOV ◽  
I.A. LABUTINA ◽  
A.F. ZHIVOGLIAD ◽  
...  

During the twentieth century the level of the Caspian Sea dropped from -26 m (1930) to -29 m (1977) below global sea level and subsequently rose again to -26.66 m in 1996. We aimed to describe responses of the vegetation in the lower Volga Delta to these substantial sea-level changes using an analysis of historic vegetation maps produced by aerial photography and satellite imagery.The sea level drop in the earlier part of the century was followed by rapid progression of the vegetation. The subsequent rapid sea-level rise in the 1980s did however not result in similarly rapid regression of the vegetation. This partial irreversibility of the vegetation response to sea-level change is explained by the wide flooding tolerance of the major emergent species, namely Phragmites australis. Floating vegetation increased in extent, most likely due to the increased availability of more favourable conditions, particularly for Nelumbo nucifera, a tropical plant reaching its northernmost distribution in the Volga Delta. This species increased in distribution from 3.5 ha in the 1930s throughout the entire Volga Delta to several thousands of hectares in the Astrakhanskiy Biosphere Reserve alone in the 1980s. The reported sea-level changes swept the ecosystems in the Astrakhanskiy Biosphere Reserve back and forth within the Reserve boundaries. At longer time scales, ten-fold greater sea-level change has been reported. The ecosystems for which the Reserve is renowned might be pushed completely out of the Reserve under these conditions. We therefore question whether the current Reserve will be sufficiently large to guarantee conservation of the biota in the lower Volga Delta at longer time scales.


2014 ◽  
Vol 11 (1) ◽  
pp. 123-169 ◽  
Author(s):  
T. Howard ◽  
J. Ridley ◽  
A. K. Pardaens ◽  
R. T. W. L. Hurkmans ◽  
A. J. Payne ◽  
...  

Abstract. Climate change has the potential to locally influence mean sea level through a number of processes including (but not limited to) thermal expansion of the oceans and enhanced land ice melt. These lead to departures from the global mean sea level change, due to spatial variations in the change of water density and transport, which are termed dynamic sea level changes. In this study we present regional patterns of sea-level change projected by a global coupled atmosphere–ocean climate model forced by projected ice-melt fluxes from three sources: the Antarctic ice sheet, the Greenland ice sheet and small glaciers and ice caps. The largest ice melt flux we consider is equivalent to almost 0.7 m of global sea level rise over the 21st century. Since the ice melt is not constant, the evolution of the dynamic sea level changes is analysed. We find that the dynamic sea level change associated with the ice melt is small, with the largest changes, occurring in the North Atlantic, contributing of order 3 cm above the global mean rise. Furthermore, the dynamic sea level change associated with the ice melt is similar regardless of whether the simulated ice fluxes are applied to a simulation with fixed or changing atmospheric CO2.


2021 ◽  
Author(s):  
Omid Memarian Sorkhabi

Abstract Today, despite the satellite altimetry, it is possible to determine the average sea level and determine the sea level change with high accuracy. In this research, data from 1992-2017 TOPEX / Poseidon, Jason1, OSTM and Jason3 altimeter satellites in the Caspian Sea have been used. The results show that every year the average of 75 mm of the Caspian Sea water level decreases and the downward trend.


Sign in / Sign up

Export Citation Format

Share Document