Middle–Late Cambrian Rankenella–Girvanella reefs of the Mila Formation, northern Iran

2008 ◽  
Vol 45 (6) ◽  
pp. 619-639 ◽  
Author(s):  
Peter D. Kruse ◽  
Andrey Yu Zhuravlev

Following the collapse of the Early Cambrian archaeocyathan–calcimicrobial reef consortium, the Middle–Late Cambrian – Furongian was an interval dominated by purely microbial dendrolite and stromatolite reefs. However, among these latter, a few exceptional occurrences of metazoan reefs are known. One such reef complex occurs in the late Middle – early Late Cambrian – Furongian portion of the Mila Formation of northern Iran. In the otherwise low-energy interval of this formation, the anthaspidellid demosponge Rankenella hamdii sp. nov. is associated with encrusting Girvanella , eocrinoid plates, rhynchonelliformean brachiopod valves and subordinate hyoliths and trilobites in tempestite shell beds; these beds underwent synsedimentary cementation on the seafloor to form hardgrounds. In the succeeding, higher energy interval, a complex of metre-scale bioherms and (or) taphoherms incorporates toppled or transported Rankenella hamdii in association with brachiopods, echinoderm plates, trilobites and some red argillaceous lime mud. Among these, undoubted reefs were constructed from a framework of digitate Rankenella hamdii with thick Girvanella encrustations. These encrustations locally developed as subvertical columnar ministromatolites, which could also merge laterally to form more extensive masses. Subsequent pervasive cementation generated isopachous rinds that preserved the reef framework intact. Coeval and younger Cambrian anthaspidellid–calcimicrobial reefs are known from California–Nevada and Texas, USA. These were heralds of the Early Ordovician resurgence of metazoan reefs.

2019 ◽  
Vol 484 (1) ◽  
pp. 61-65
Author(s):  
R. M. Antonuk ◽  
A. A. Tretyakov ◽  
K. E. Degtyarev ◽  
A. B. Kotov

U–Pb geochronological study of amphibole-bearing quartz monzodiorites of the alkali-ultramafic Zhilandy complex in Central Kazakhstan, whose formation is deduced at the Early Ordovician era (479 ± 3 Ma). The obtained data indicate three stages of intra-plate magmatism in the western part of the Central Asian Orogenic Belt: Late Neoproterozoic stage of alkali syenites of the Karsakpay complex intrusion, Early Cambrian stage of ultramafic-gabbroid plutons of the Ulutau complex formation, and Late Cambrian–Early Ordovician stage of formation of the Zhilandy complex and Krasnomay complex intrusions.


2021 ◽  
pp. 1-14
Author(s):  
Adrian W. A. Rushton ◽  
Mansoureh Ghobadi Pour ◽  
Leonid E. Popov ◽  
Hadi Jahangir ◽  
Arash Amini

Abstract Graptolites have been collected from sections through Lower Ordovician strata in northern Iran. At the Saluk Mountains, in the Kopet–Dagh region, mudrocks yielded fragmentary tubaria of Rhabdinopora sp. cf. R. flabelliformis, indicating the presence of lower Tremadocian strata there; stratigraphically, they lie between two limestone beds with the euconodont Cordylodus lindstromi. At Simeh–Kuh in the eastern Alborz Mountains (Semnan Province), upper Tremadocian – lower Floian strata include laminated dark mudstones that contain restricted graptolite faunas, mainly of small declined didymograptids; these are thought to represent incursions of plankton during periods of marine highstands. The lower major flooding surface in Simeh–Kuh coincides with an invasion of the graptolite biofacies and an incursion of Hunnegraptus? sp.; the second major flooding surface is associated with an incursion of Baltograptus geometricus. They were most probably synchronous with those in the lower part of the Hunnegraptus copiosus Biozone and at the base of the Cymatograptus protobalticus Biozone in the of the Tøyen Shale Formation succession of Västergötland, Scandinavia, suggesting that observed characters of sedimentation were eustatically controlled.


2016 ◽  
Vol 113 (25) ◽  
pp. 6945-6948 ◽  
Author(s):  
Luis A. Buatois ◽  
Maria G. Mángano ◽  
Ricardo A. Olea ◽  
Mark A. Wilson

Contrasts between the Cambrian Explosion (CE) and the Great Ordovician Biodiversification Event (GOBE) have long been recognized. Whereas the vast majority of body plans were established as a result of the CE, taxonomic increases during the GOBE were manifested at lower taxonomic levels. Assessing changes of ichnodiversity and ichnodisparity as a result of these two evolutionary events may shed light on the dynamics of both radiations. The early Cambrian (series 1 and 2) displayed a dramatic increase in ichnodiversity and ichnodisparity in softground communities. In contrast to this evolutionary explosion in bioturbation structures, only a few Cambrian bioerosion structures are known. After the middle to late Cambrian diversity plateau, ichnodiversity in softground communities shows a continuous increase during the Ordovician in both shallow- and deep-marine environments. This Ordovician increase in bioturbation diversity was not paralleled by an equally significant increase in ichnodisparity as it was during the CE. However, hard substrate communities were significantly different during the GOBE, with an increase in ichnodiversity and ichnodisparity. Innovations in macrobioerosion clearly lagged behind animal–substrate interactions in unconsolidated sediment. The underlying causes of this evolutionary decoupling are unclear but may have involved three interrelated factors: (i) a Middle to Late Ordovician increase in available hard substrates for bioerosion, (ii) increased predation, and (iii) higher energetic requirements for bioerosion compared with bioturbation.


2020 ◽  
Vol 178 (1) ◽  
pp. jgs2020-043 ◽  
Author(s):  
Feiyang Chen ◽  
Glenn A. Brock ◽  
Zhiliang Zhang ◽  
Brittany Laing ◽  
Xinyi Ren ◽  
...  

The Guanshan Biota is an unusual early Cambrian Konservat-Lagerstätte from China and is distinguished from all other exceptionally preserved Cambrian biotas by the dominance of brachiopods and a relatively shallow depositional environment. However, the faunal composition, overturn and sedimentology associated with the Guanshan Biota are poorly understood. This study, based on collections through the best-exposed succession of the basal Wulongqing Formation at the Shijiangjun section, Wuding County, eastern Yunnan, China recovered six major animal groups with soft tissue preservation; brachiopods vastly outnumbered all other groups. Brachiopods quickly replace arthropods as the dominant fauna following a transgression at the base of the Wulongqing Formation. A transition from a botsfordiid-, eoobolid- and acrotretid- to an acrotheloid-dominated brachiopod assemblage occurs up-section. Four episodically repeated lithofacies reveal a relatively low-energy, offshore to lower shoreface sedimentary environment at the Shijiangjun section, which is very different from the Wulongqing Formation in the Malong and Kunming areas. Multiple event flows and rapid obrution are responsible for faunal overturn and fluctuation through the section. A detailed lithofacies and palaeontological investigation of this section provides a better understanding of the processes and drivers of faunal overturn during the later phase of the Cambrian Explosion.Supplementary material: Composition and comparison of the Malong Fauna and the Guanshan Biota is are available at: https://doi.org/10.6084/m9.figshare.c.5080799


1986 ◽  
Vol 60 (3) ◽  
pp. 606-626 ◽  
Author(s):  
Bruce L. Stinchcomb

Fourteen new species and six new genera of the molluscan class Monoplacophora are described from the Upper Cambrian Potosi and Eminence formations and the Lower Ordovician Gasconade Formation of the Ozark Uplift of Missouri and some new biostratigraphic horizons are introduced. A new superfamily, the Hypseloconellacea nom. trans. Knight, 1956, and a new family, the Shelbyoceridae, are named. The genus Proplina is represented by five new species: P. inflatus, P. suttoni from the Cambrian Potosi Formation, P. arcua from the Cambrian Eminence Formation and P. meramecensis and P. sibeliusi from the Lower Ordovician Gasconade Formation. A new genus and species in the subfamily Proplininae, Ozarkplina meramecensis, is described from the Upper Cambrian Eminence Formation. Four new monoplacophoran genera in the superfamily Hypseloconellacea and their species are described, including: Cambrioconus expansus, Orthoconus striatus, Cornuella parva from the Eminence Formation, and Gasconadeoconus ponderosa, G. waynesvillensis, G. expansus from the Gasconade Formation. A new genus in the new family Shelbyoceridae, Archeoconus missourensis, is described from the Eminence Formation and a new species of Shelbyoceras, S. bigpineyensis, is described from the Gasconade Formation.


Sign in / Sign up

Export Citation Format

Share Document