UPPER MANTLE STRUCTURE IN CANADA FROM SEISMIC OBSERVATIONS USING CHEMICAL EXPLOSIONS

1967 ◽  
Vol 4 (5) ◽  
pp. 961-975 ◽  
Author(s):  
K. G. Barr

Long-range seismic observations at the standard Canadian seismic stations, from chemical explosions in Hudson Bay and Lake Superior, are used to derive a P-wave velocity structure for the upper mantle. The coordinates of observed cusps are used to define the structural discontinuities. These discontinuities are at depths of 126 and 366 km, which agree closely with the depths of the S-wave velocity discontinuities deduced from surface-wave observations. The observations do not require a low velocity layer in the upper mantle.

1975 ◽  
Vol 12 (12) ◽  
pp. 2134-2144 ◽  
Author(s):  
Allan Bates ◽  
D. H. Hall

A line of eight recording sites in southern Saskatchewan and Manitoba, with ranges from 793 to 1284 km, recorded a series of chemical explosions in Greenbush Lake, British Columbia, as part of Project Edzoe in 1969.It is found that travel-times fall into two branches. The first branch is interpreted as representing the effect of a linear increase of P wave velocity, increasing from 8.10 km/s at the top of the mantle, with a gradient of 0.0017 s−1. The second branch indicates a rapid increase of gradient occurring somewhere between depths of 120 km and 150 km. Amplitude studies suggest, in the absence of complete triplication, a zone of low velocity gradient beneath the rapid increase. The presence or absence of a low velocity zone was not indicated in the data.Previous long-range refraction surveys indicate that a similar gradient in velocity also occurs beneath the Superior province of the Canadian shield, and that P-wave velocities are lowest at its center, reaching higher values at its edges.


1971 ◽  
Vol 61 (6) ◽  
pp. 1549-1570
Author(s):  
K. L. Kaila ◽  
V. G. Krishna ◽  
Hari Narain

abstract The upper mantle P-wave velocity structure of the region of Japan has been studied in great detail from travel times of 107 earthquakes with focal depths varying from 40 to 600 km, using a new analytical method given by Kaila (1969). In southwestern Japan the P-wave velocity is found to be 7.88 km/sec at a 40-km depth, and it remains almost constant to a depth of 255 km. For northeastern Japan the velocity, determined as 7.88 km/sec at 40 km, increases linearly with moderate gradient to 8.14 km/sec at a 175-km depth. On the other hand, for central Japan the P-velocity is found to be 7.92 km/sec at a 40-km depth, and increases linearly with a high-velocity gradient to 8.33 km/sec at a depth of 180 km. Then, there is a slight decrease in the velocity gradient, but the velocity still increases linearly to 8.52 km/sec at a depth of 365 km. At this transition depth, there is a first-order velocity discontinuity—the velocity increasing from 8.52 to 9.10 km/sec. Below this depth, velocity again increases linearly from 9.10 to 9.99 km/sec at a depth of 600 km. Probable causes for these lateral-velocity inhomogeneities in the upper mantle of the Japan region are discussed. Graphs have been drawn to show the variation with depth of Δ*, the epicentral distance to the inflection point, (Δ2 − Δ1), ptrue = ∂T/∂Δ and ap = (T − pΔ) at the inflection point, the latter acting as a calibration curve for earthquake focal-depth determination in Japan. Using this calibration curve, focal depths are redetermined for all of the earthquakes under study for central Japan, and the same are compared with the values reported in the International Seismological Summaries.


1975 ◽  
Vol 12 (2) ◽  
pp. 174-181
Author(s):  
E. J. Roebroek ◽  
E. Nyland

A study of over 1500 P-wave phases which pass, for the most part, through the upper mantle beneath Western Canada, shows that there is no significant lateral variation in P-wave velocity structure beneath Western Canada, and that the Wiggins and Helmberger model for the Western regions of the United States does not fit the data for Western Canada.One possible interpretation of the data for Western Canada is closer to the classical Herrin model of P-wave velocity as a function of depth than it is to the Wiggins and Helmberger A model.


Sign in / Sign up

Export Citation Format

Share Document