bransfield basin
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 7)

H-INDEX

14
(FIVE YEARS 0)

Author(s):  
P. Poli ◽  
L. Cabrera ◽  
M. C. Flores ◽  
J.C. Báez ◽  
J.B. Ammirati ◽  
...  

2021 ◽  
Author(s):  
Piero Poli ◽  
Leoncio Cabrera ◽  
Maria Costanza Flores ◽  
JUAN CARLOS Báez ◽  
Jean Baptiste Ammirati ◽  
...  
Keyword(s):  

Author(s):  
B Oliva-Urcia ◽  
J López-Martínez ◽  
A Maestro ◽  
A Gil ◽  
T Schmid ◽  
...  

Summary Studying the magnetic fabric in volcanic edifices, particularly lava flows from recent eruptions, allows us to understand the orientation distribution of the minerals related to the flow direction and properly characterize older and/or eroded flows. In this work, the magnetic fabric from recent (Quaternary) lava flows (slightly inclined in seven sites and plateau lavas in two sites), pyroclastic deposits (two sites from a scoria cone) and volcanic cones, domes and plugs (three sites) from Penguin and Bridgeman islands, located in the Bransfield back-arc basin, are presented. The volcanism in the two islands is related to rifting occurring due to the opening of the Bransfield Strait, between the South Shetlands archipelago and the Antarctic Peninsula. The direction of flow of magmatic material is unknown. Rock magnetic analyses, low temperature measurements and electron microscope observations (back-scattered electron imaging and Energy Dispersive X-ray analyses) reveal a Ti-poor magnetite (and maghemite) as the main carrier of the magnetic fabric. Hematite may be present in some samples. Samples from the center of the lavas reveal a magnetic lineation either parallel or imbricated with respect to the flow plane, whereas in the plateau lavas the magnetic lineation is contained within the subhorizontal plane except in vesicle-rich samples, where imbrication occurs. The magnetic lineation indicates a varied flow direction in Bridgeman Island with respect to the spreading Bransfield Basin axis. The flow direction in the plateau lavas on Penguin Island is deduced from the imbrication of the magnetic fabric in the more vesicular parts, suggesting a SE-NW flow. The volcanic domes are also imbricated with respect to an upward flow, and the bombs show scattered distribution.


2020 ◽  
Vol 40 (5) ◽  
pp. 781-788
Author(s):  
Jeniffer Alves Nobre ◽  
Antonio Fernando Menezes Freire ◽  
Arthur Ayres Neto ◽  
Mateus dos Santos Martins ◽  
Cleverson Guizan Silva ◽  
...  

2020 ◽  
Author(s):  
Maria-Elena Vorrath ◽  
Paola Cárdenas ◽  
Lorena Rebolledo ◽  
Xiaoxu Shi ◽  
Juliane Müller ◽  
...  

<p>Recent changes and variability in climate conditions leave a significant footprint on the distribution and properties of sea ice, as it is sensitive to environmental variations. We investigate the rapidly transforming region of the Western Antarctic Peninsula (WAP) focusing on the conditions and development of sea ice in the pre-satellite era. For this study on past sea ice cover we apply the novel proxy IPSO<sub>25</sub> (Ice Proxy for the Southern Ocean with 25 carbon atoms; Belt et al., 2016). Three sampling sites were selected to cover areas near the Antarctic mainland, in the Bransfield Basin (2000 m depth) and the deeper shelf under an oceanographic frontal system. Analysis of short cores (multicores) resolving the last 200 years (based on <sup>210</sup>Pb<sub>ex</sub> dating) focused on geochemical bulk parameters, biomarkers (highly branched isoprenoids, GDGTs, sterols) and diatoms. These results are compared to multiple climate archives and modelled data. This multiproxy based approach provides insights on changes in spring sea ice cover, primary production regimes, subsurface ocean temperature (SOT based on TEX<sup>L</sup><sub>86</sub>) and oceanographic as well as atmospheric circulation patterns. While environmental proxies preserved in two cores near the coast and in the Bransfield Basin reflect the properties of water masses from the Bellingshausen Sea and Weddell Sea, respectively, data from the third core at the deeper shelf depict mixed signals of both water masses. Our study reveals clear evidence for warm and cold periods matching with ice core records and other marine sediment data at the WAP. We observe a general decrease in SOT and an increase in sea ice cover overprinted by high decadal fluctuations. Trends in SOT seem to be decoupled from atmospheric temperatures in the 20<sup>th</sup> century, and this is supported by previous studies (e.g. Barbara et al., 2013), and may be related to the Southern Annual Mode. We consider numerical modelling of sea ice conditions, sea surface temperature and SOT for further support of our findings.</p><p> </p><p>References:</p><p>Barbara, L., Crosta, X., Schmidt, S. and Massé, G.: Diatoms and biomarkers evidence for major changes in sea ice conditions prior the instrumental period in Antarctic Peninsula, Quat. Sci. Rev., 79, 99–110, doi:10.1016/j.quascirev.2013.07.021, 2013.</p><p>Belt, S. T., Smik, L., Brown, T. A., Kim, J. H., Rowland, S. J., Allen, C. S., Gal, J. K., Shin, K. H., Lee, J. I. and Taylor, K. W. R.: Source identification and distribution reveals the potential of the geochemical Antarctic sea ice proxy IPSO25, Nat. Commun., 7, 1–10, doi:10.1038/ncomms12655, 2016.</p>


2019 ◽  
Author(s):  
Julia Machado ◽  
Mateus Martins ◽  
Ana Carla Pinheiro ◽  
Fabrício Ferreira ◽  
Arthur Ayres ◽  
...  

2017 ◽  
Vol 08 ◽  
Author(s):  
Diego C. Franco ◽  
Camila N. Signori ◽  
Rubens T. D. Duarte ◽  
Cristina R. Nakayama ◽  
Lúcia S. Campos ◽  
...  

2016 ◽  
Vol 46 (1) ◽  
pp. 171-172 ◽  
Author(s):  
M. Canals ◽  
D. Amblas ◽  
J. L. Casamor

Sign in / Sign up

Export Citation Format

Share Document