Deposition of the Cambrian continental rise: the St. Roch Formation near St. Jean-Port-Joli, Quebec

1981 ◽  
Vol 18 (8) ◽  
pp. 1320-1335 ◽  
Author(s):  
Percy G. Strong ◽  
Roger G. Walker

Detailed mapping between Plage Victor and St. Jean-Port-Joli has enabled us to add a 550 m section to the top of the existing 450 m section of Hubert, making the longest continuous section anywhere in the Cambrian continental rise, Iapetus margin of North America. Our section can be divided into four main facies. The red mudstone facies makes up 30% of the section, and contains thin classical turbidites with easterly flow directions. The classical turbidite facies include both calcareous and siliceous turbidites, mostly Bouma BCE types, in beds up to about 1 m thick. Flow directions are again mostly to the east. The massive and pebbly sandstone facies occurs in units up to nearly 100 m thick, and contains both massive and normally graded beds with many fluid-escape features and rare trough cross-bedding. Occurrences of this facies normally have channelled bases, and there are several 5–10 m thick thinning- and fining-upward sequences. Paleoflow directions are southeasterly. The slurry facies includes massive to graded slurry beds, interpreted as debris flow deposits, and slurry breccias that incorporate slabs of interbedded sandstone.We interpret the red mudstones and classical turbidites as base-of-slope, continental rise deposits. The generally easterly and east-southeasterly flow directions suggest a local dip of the continental rise in that direction. The massive and pebbly sandstones represent the fill of feeder channels incised into the rise with southeast, oblique-to-maximum-dip, directions. The absence of thickening-upward sequences in the various turbidite facies suggests the absence of conventional submarine fans, perhaps due to the dominantly fine-grained material forming the lower slope and rise in this area.

2021 ◽  
Vol 11 (12) ◽  
pp. 5513
Author(s):  
Muhammad Jamil ◽  
Numair Ahmed Siddiqui ◽  
Abdul Hadi Bin Abd Rahman ◽  
Noor Azahar Ibrahim ◽  
Mohd Suhaili Bin Ismail ◽  
...  

Deepwater lobes constitute a significant volume of submarine fans and are primarily believed to exhibit a simple sheet geometry. However, recent studies interpret the geometries of these deep-marine lobes as distinct with respect to the complexity of the facies and their distribution. Hence, a conceptual model of deep-marine sediments is essential to discuss the deep-marine sediments associated with the fan and lobe architecture. The present study highlights the facies heterogeneity and distribution of various lobe elements at a multiscale level by considering a case study of the West Crocker Formation of Sabah in northwest Borneo. The formation was logged on a bed-to-bed scale from recently well-exposed sections, with a total vertical thickness of more than 300 m. The lithological characteristics, bed geometry, sedimentary textures and structures of individual beds were used to categorize the rock units into nine sedimentary lithofacies: five sandstone lithofacies (S1–S5), one hybrid bed facies (H), two siltstone facies (Si1 and Si2) and one shale or mudstone facies (M). These facies were grouped into four facies associations (FA1–FA4), which were interpreted as lobe axis (FA1), lobe off-axis (FA2), lobe fringe (FA3) and distal fringe to interlobe (FA4) facies associations. This study is applicable for the distribution of lobes and their subseismic, multiscale complexities to characterize the potential of hydrocarbon intervals in deep-marine sand-shale system around the globe.


Water ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 219 ◽  
Author(s):  
Antonio-Juan Collados-Lara ◽  
David Pulido-Velazquez ◽  
Rosa María Mateos ◽  
Pablo Ezquerro

In this work, we developed a new method to assess the impact of climate change (CC) scenarios on land subsidence related to groundwater level depletion in detrital aquifers. The main goal of this work was to propose a parsimonious approach that could be applied for any case study. We also evaluated the methodology in a case study, the Vega de Granada aquifer (southern Spain). Historical subsidence rates were estimated using remote sensing techniques (differential interferometric synthetic aperture radar, DInSAR). Local CC scenarios were generated by applying a bias correction approach. An equifeasible ensemble of the generated projections from different climatic models was also proposed. A simple water balance approach was applied to assess CC impacts on lumped global drawdowns due to future potential rainfall recharge and pumping. CC impacts were propagated to drawdowns within piezometers by applying the global delta change observed with the lumped assessment. Regression models were employed to estimate the impacts of these drawdowns in terms of land subsidence, as well as to analyze the influence of the fine-grained material in the aquifer. The results showed that a more linear behavior was observed for the cases with lower percentage of fine-grained material. The mean increase of the maximum subsidence rates in the considered wells for the future horizon (2016–2045) and the Representative Concentration Pathway (RCP) scenario 8.5 was 54%. The main advantage of the proposed method is its applicability in cases with limited information. It is also appropriate for the study of wide areas to identify potential hot spots where more exhaustive analyses should be performed. The method will allow sustainable adaptation strategies in vulnerable areas during drought-critical periods to be assessed.


Author(s):  
Yumeng Liang ◽  
Anfu Zhou ◽  
Huanhuan Zhang ◽  
Xinzhe Wen ◽  
Huadong Ma

Contact-less liquid identification via wireless sensing has diverse potential applications in our daily life, such as identifying alcohol content in liquids, distinguishing spoiled and fresh milk, and even detecting water contamination. Recent works have verified the feasibility of utilizing mmWave radar to perform coarse-grained material identification, e.g., discriminating liquid and carpet. However, they do not fully exploit the sensing limits of mmWave in terms of fine-grained material classification. In this paper, we propose FG-LiquID, an accurate and robust system for fine-grained liquid identification. To achieve the desired fine granularity, FG-LiquID first focuses on the small but informative region of the mmWave spectrum, so as to extract the most discriminative features of liquids. Then we design a novel neural network, which uncovers and leverages the hidden signal patterns across multiple antennas on mmWave sensors. In this way, FG-LiquID learns to calibrate signals and finally eliminate the adverse effect of location interference caused by minor displacement/rotation of the liquid container, which ensures robust identification towards daily usage scenarios. Extensive experimental results using a custom-build prototype demonstrate that FG-LiquID can accurately distinguish 30 different liquids with an average accuracy of 97%, under 5 different scenarios. More importantly, it can discriminate quite similar liquids, such as liquors with the difference of only 1% alcohol concentration by volume.


Author(s):  
B. Shettima ◽  
M. Bukar ◽  
A. Kuku ◽  
H. I. Kamale ◽  
B. Shettima

This research aims to evaluate the facies and facies association of the Yolde Formation at Kware stream in the Gongola Sub-basin of the Northern Benue Trough with objective of characterizing its paleodepositional environment. Six lithofacies consisting of trough crossbedded sandstone facies (St), massive bedded sandstone facies (Sm), planar crossbedded sandstone facies (Sp), ripple laminated sandstone facies (Sr), parallel sandstone facies (Sl) and mudstone facies (Fm) defining its stratal packages were skewed into distinctive assemblages of flaser, wavy and lenticular bedding. This present a fining upward signature with facies association typical of tidal flat system. This is evident of a coastal progradation with sequences reflecting migration of a supra-tidal mudflat over intertidal mixed-flat zone which progressively superposed subtidal sandflats. This is indicative of a coastal shoreline with a relatively progradational phase within the net transgressive regional framework of the Cretaceous Yolde Formation.


2006 ◽  
Vol 43 (8) ◽  
pp. 1165-1181 ◽  
Author(s):  
P D Johnstone ◽  
P S Mustard ◽  
J A MacEachern

The Turonian to Santonian Comox Formation forms the basal unit of the Nanaimo Group. In the southern Gulf Islands of British Columbia, the Comox Formation nonconformably overlies Devonian metavolcanic and Jurassic intrusive rocks and is interpreted to reflect a rocky foreshore reworked by waves and ultimately drowned during transgression. The nonconformity displays a relief of metres to tens of metres. Basal deposits vary in thickness, as does the facies character along the several kilometres of paleoshoreline studied. In the study area, three distinct but related environments are expressed, typical of a complex rocky shoreline with headlands and protected coves. Crudely stratified conglomerates represent gravel-dominated fans characterized by debris-flow processes, building out from local coastal cliffs and gullies directly onto the rocky shoreline. Fine-grained basal units represent shoreline environments protected from higher energy shoreline processes, presumably in small embayments. Sandstone facies associations reflect storm-dominated shoreface environments. The unusual thickness and coarseness of these shoreface intervals suggest a combination of increasing accommodation space, proximal and high sediment supply, and high frequency and energy of storm activity. This, in turn, suggests that the majority of the shoreline was exposed to the full effects of large, open-ocean storms. This interpretation differs from most previous models for the lower Nanaimo Group, which suggest that deposition occurred in more sheltered strait or bay environments.


2014 ◽  
Vol 388 ◽  
pp. 367-373 ◽  
Author(s):  
Julien Stodolna ◽  
Zack Gainsforth ◽  
Anna L. Butterworth ◽  
Andrew J. Westphal

Sign in / Sign up

Export Citation Format

Share Document