Late Quaternary lacustrine and deltaic sedimentation near Banff, Alberta

1983 ◽  
Vol 20 (12) ◽  
pp. 1834-1842 ◽  
Author(s):  
R. A. Kostaschuk ◽  
D. G. Smith

Evidence provided by surface morphology, exposures, cores, and the stratigraphic positions of Mazama (6600 years BP) and Bridge River (2500 years BP) ashes was used to interpret the origin and late Quaternary history of lacustrine and deltaic sediments in the Bow River valley near Banff, Alberta.There were three distinct stages of Lake Vermilion occupying the study area from Late Pleistocene to mid-Holocene times. The earliest stage was ice dammed, deposited beach gravel and nearshore sand, and drained along the present course of the Cascade River to the east. The second, proglacial stage is associated with thick subsurface deposits of non-organic clay and drained to the east along the course of the modern Bow River. The final stage is suggested by point bar and aeolian beach dune sediments.With the stabilization of the final stage of Lake Vermilion the low-energy, river-dominated Bow Delta prograded into the lake from the west. Progradation of the delta through three depositional zones produced the present Vermilion Lakes.

1990 ◽  
Vol 102 (7) ◽  
pp. 969-982 ◽  
Author(s):  
STEVEN L. RENEAU ◽  
WILLIAM E. DIETRICH ◽  
DOUGLAS J. DONAHUE ◽  
A. J. TIMOTHY JULL ◽  
MEYER RUBIN

1987 ◽  
Vol 36 ◽  
pp. 275-287
Author(s):  
Margit Jensen ◽  
Elsebeth Thomsen

The diagenetic history of the skeletal elements of Late Pleistocene-Holocene Ophiura sarsi from the shelf off northern Norway (Andfjorden, Malangsdjupet) is elucidated by comparison with natural and induced degradation of the skeletal elements of Recent ophiuroids (brittle stars) and asteroids (sea stars) from Danish waters. Dissolution features ("core-and-rind") in the trabeculae of fossil and Recent echinoderm stereom are initiated during death and early decay of organic tissue in the animals. The trabeculae have a polycrystal­line lamellar ultrastructure and lose their older central part during later stages of dissolution, which are dependant on undersaturation of the sea-water with regard to CaC03• The presence of undersaturated sea-water is supported by palaeoecological studies (Thomsen & Vorren 1984, 1986) implying oxygen deficient periods in the Late Pleistocene and an increased biogenic production in the Holocene. Pyrite framboids are situated in the secondary voids within the trabeculae and in the pore space of the stereom of the Late Pleistocene elements. No pyrite is observed within the polycrystalline lamellar ultrastructure of the trabeculae. The Late Pleistocene "pyritization" took place during oxygen deficient periods at the sediment-water interface or within the reduced zone of the topmost sediment.


2001 ◽  
Vol 2 (2) ◽  
pp. 95 ◽  
Author(s):  
B. ALPAR

The Enez-Evros Delta, NE Aegean Sea, is located in one the most important wetlands in the world with its sandy offshore islands, abandoned channel mouths, sand-dunes, shoals, marshlands, saline lagoons and saltpans. It comprises very well developed sedimentary units and a prodelta lying on an older submarine delta. The present day elevations of the middle-late Pleistocene marine terraces indicate a regional tectonic uplift in the area. Due to lack of geophysical and bore hole data and partly due to its strategic position, the structural and stratigraphic features of the submarine extension of the delta are not known in detail. In this paper, Plio-Quaternary history of this delta and its submarine part on the Turkish shelf was explored by using high-resolution shallow reflection seismic profiles. The delta is formed by the alluvial deposits of the Enez-Evros River and shaped by their interaction with the sea. It takes place in front of a large and protected ancient bay which was filled rapidly over millennia. The sediments in the plateau off the river are principally pro-deltaic with muddy areas near the river mouths changing to muddy sand further out. The sea-level changes in Plio-Quaternary were characterised by three different seismic stratigraphic units on the folded Miocene limestone basement. In the late Pleistocene, the shelf area over an Upper Miocene basement was flooded during the Riss-Würm interglacial period, exposed in the Würm glacial stage, and flooded once again during the Holocene transgression.


2001 ◽  
Vol 38 (4) ◽  
pp. 719-731 ◽  
Author(s):  
A Plouffe ◽  
V M Levson

The Quaternary stratigraphy of the Nechako River – Cheslatta Lake area of central British Columbia is described and interpreted to reconstruct the late Quaternary history of the region. Exposures of glacial and nonglacial sediments deposited prior to the last glaciation (Fraser) are limited to three sites. Pollen assemblages from pre-Fraser nonglacial sediments at two of these sites reveal forested conditions around 39 000 BP. During the advance phase of the Fraser Glaciation, glacial lakes were ponded when trunk glaciers blocked some tributary valleys. Early in the glaciation, the drainage was free in easterly draining valleys. Subsequently, the easterly drainage was blocked either locally by sediments and ice or as a result of impoundment of the Fraser River and its tributaries east of the study area. Ice generally moved east and northeast from accumulation zones in the Coast Mountains. Ice flow was influenced by topography. Major late-glacial lakes developed in the Nechako River valley and the Knewstubb Lake region because potential drainage routes were blocked by ice.


Author(s):  
Michael A. E. Browne

SynopsisThe Upper Palaeozoic bedrock, which is of sedimentary and volcanic origin, is briefly described. The origin of the Forth as a series of depressions in the bedrock surface probably owes much to erosion of a pre-existing Tertiary landscape during phases of Quaternary glaciation. The late Quaternary history of the area is described, relating the distribution of the sediments deposited in the Forth to climatic events and changes in relative sea-level. Since the acme of the last main glaciation about 20,000 years ago, late Devensian marine and estuarine sediments have been deposited on the underlying glacial till sheet at altitudes ranging from more than 120 m below O.D. to at least 46 m above O.D. Similarly, raised and buried beaches and their deposits occur at altitudes from 40 m above O.D. down to around 10 m below O.D. in the estuary. During the Flandrian, sea-level has fluctuated, reaching its maximum (about 11 to 15 m above O.D.) about 6500 years ago. The typical deposit of this period is the carse clay which forms a series of extensive, fertile raised mudflats around the estuary. The calcareous marine faunas of the carse clay and older deposits are outlined.


Sign in / Sign up

Export Citation Format

Share Document