Telluride Mineralogy of the Deer Horn Au-Ag-Te-(Bi-Pb-W) Deposit, British Columbia: Implications for the Generation of Tellurides

Author(s):  
Jordan A. Roberts ◽  
Lee A. Groat ◽  
Paul G. Spry ◽  
Jan Cempírek

ABSTRACT The Deer Horn deposit, located 150 km south of Smithers in west-central British Columbia, is an Eocene polymetallic system enriched in Au-Ag-Te with lesser amounts of Bi-Pb-W; the Au and Ag are hosted in Te-bearing minerals and Ag-rich gold (Au-Ag alloy). A quartz-sulfide vein system containing the main zones of Au-Ag-Te mineralization and attendant sericite alteration occurs in the hanging wall of a local, spatially related thrust fault and is genetically related to the nearby Eocene Nanika granodiorite intrusive suite. Tellurium-bearing minerals commonly form isolated euhedral to subhedral grains or composite grains (up to 525 μm in size) of Ag-, Bi-, Pb-, and Au-rich tellurium-bearing minerals (e.g., hessite, tellurobismuthite, volynskite, altaite, and petzite). Panchromatic cathodoluminescence imaging revealed four generations of quartz. Within remnant cores of quartz I, local oscillatory zoning occurs in quartz II. Fine-grained veinlets of quartz III and IV crosscut quartz I and II, showing evidence of at least two deformation events; late-forming veinlets of calcite crosscut all generations of quartz. The tellurides and Ag-rich gold occur in stage III quartz. Three types of fluid inclusions were observed in stage III and IV quartz: (1) aqueous liquid and vapor inclusions (L-V); (2) aqueous carbonic inclusions (L-L-V); and (3) carbonic inclusions (vapor-rich). Primary fluid inclusions related to the telluride mineralization within quartz III were tested with microthermometry, along with a few primary inclusions from quartz IV. Homogenization temperatures are 130.0–240.5 °C for L-V inclusions and 268.0–336.4 °C for L-L-V inclusions. Aqueous carbonic inclusions had solid CO2 melting temperatures from –62.1 to –56.8 °C, indicating the presence of ≈1 to 30 mol.% dissolved methane in these inclusions. The Deer Horn Au-Ag-Te-(Bi-Pb-W) deposit is a reduced intrusion-related gold system characterized by sheeted veins, metal zoning, low salinity aqueous-carbonic fluids, and a genetic relationship to an Eocene granodiorite. Values of δ34S of pyrite vary from –1.6 to 1.6 per mil and are compatible with a magmatic source of sulfur.

2021 ◽  
Vol 21 (4) ◽  
pp. 13-30
Author(s):  
Laécio Cunha de Souza ◽  
Regina Celia de Oliveira Brasil Delgado ◽  
Heitor Neves Maia

Micaschists that host the Acari batholith (Ediacaran age, 572 to 577 My) are characterized by a large number of quartz veins. The veins are more abundant in higher-temperature metamorphic zones and, together with lower metamorphic zones, form an aureole centered in the batholith. Most of the fluid inclusions are two-phase (H2O-CO2 and liquid/vapor), but three-phase varieties (liquid/vapor/salt cubes; liquid/liquid/vapor) occur locally. The analyzed veins come from the biotite + chlorite + muscovite, biotite + garnet, cordierite + andalusite, and cordierite + sillimanite metamorphic zones. CO2 melting temperatures (TmCO2) vary from -62.6 to -56.7°C, suggesting CH4 and/or N2. Eutectic temperatures (Te) in quartz veins show average values of -30.8°C in the biotite + chlorite + muscovite and biotite + garnet zones, and -38.6°C in the cordierite + andalusite and cordierite + sillimanite zones. Ice-melting temperatures (Tmice) are lower in the higher-temperature metamorphic zones. The mode values are -3.8, -5.5, -5.6, and -7.3°C, corresponding respectively to the biotite + chlorite + muscovite, biotite + garnet, cordierite + andalusite, and cordierite + sillimanite zones. A fluid characterized by the H2O-Na-Cl (KCl)-MgCl2-FeCl2-CaCl2 system is defined by: Tmice from near -1.9 to -32°C, the presence of salt cubes mainly in the cordierite + andalusite and cordierite + sillimanite zones, and recorded eutectic temperatures (Te) from -16.5 to -59.1°C. In addition, total homogenization temperatures (Tht) ranging from 117 to 388°C were obtained for primary aqueous fluid inclusions. This indicates a long period of fluid circulation under conditions of falling temperatures. Our results are consistent with an increase in the salinity of the aqueous fluid across the thermal aureole toward the granitic batholith.


Author(s):  
Sebastian Haschke ◽  
Jens Gutzmer ◽  
Cora C. Wohlgemuth-Ueberwasser ◽  
Dennis Kraemer ◽  
Mathias Burisch

AbstractThe Niederschlag fluorite-barite vein deposit in the Western Erzgebirge, Germany, has been actively mined since 2013. We present the results of a first comprehensive study of the mineralogy, petrography, fluid inclusions, and trace element geochemistry of fluorite related to the Niederschlag deposit. Two different stages of fluorite mineralization are recognized. Stage I fluorite is older, fine-grained, associated with quartz, and forms complex breccia and replacement textures. Conversely, the younger Stage II fluorite is accompanied by barite and often occurs as banded and coarse crystalline open-space infill. Fluid inclusion and REY systematics are distinctly different for these two fluorite stages. Fluid inclusions in fluorite I reveal the presence of a low to medium saline (7–20% eq. w (NaCl+CaCl2)) fluid with homogenization temperatures of 140–180 °C, whereas fluorite II inclusions yield distinctly lower (80–120 °C) homogenization temperatures with at least two high salinity fluids involved (18–27% eq. w (NaCl+CaCl2)). In the absence of geochronological data, the genesis of the earlier generation of fluorite-quartz mineralization remains enigmatic but is tentatively related to Permian magmatism in the Erzgebirge. The younger fluorite-barite mineralization, on the other hand, has similarities to many fluorite-barite-Pb-Zn-Cu vein deposits in Europe that are widely accepted to be related to the Mesozoic opening of the northern Atlantic Ocean.


Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 725
Author(s):  
Ludmila B. Damdinova ◽  
Bulat B. Damdinov

This article discusses the peculiarities of mineral composition and a fluid inclusions (FIs further in the text) study of the Kholtoson W and Inkur W deposits located within the Dzhida W-Mo ore field (Southwestern Transbaikalia, Russia). The Mo mineralization spatially coincides with the apical part of the Pervomaisky stock (Pervomaisky deposit), and the W mineralization forms numerous quartz veins in the western part of the ore field (Kholtoson vein deposit) and the stockwork in the central part (Inkur stockwork deposit). The ore mineral composition is similar at both deposits. Quartz is the main gangue mineral; there are also present muscovite, K-feldspar, and carbonates. The main ore mineral of both deposits is hubnerite. In addition to hubnerite, at both deposits, more than 20 mineral species were identified; they include sulfides (pyrite, chalcopyrite, galena, sphalerite, bornite, etc.), sulfosalts (tetrahedrite, aikinite, stannite, etc.), oxides (scheelite, cassiterite), and tellurides (hessite). The results of mineralogical and fluid inclusions studies allowed us to conclude that the Inkur W and the Kholtoson W deposits were formed by the same hydrothermal fluids, related to the same ore-forming system. For both deposits, the fluid inclusion homogenization temperatures varied within the range ~195–344 °C. The presence of cogenetic liquid- and vapor-dominated inclusions in the quartz from the ores of the Kholtoson deposit allowed us to estimate the true temperature range of mineral formation as 413–350 °C. Ore deposition occurred under similar physical-chemical conditions, differing only in pressures of mineral formation. The main factors of hubnerite deposition from hydrothermal fluids were decreases in temperature.


1992 ◽  
Vol 29 (1) ◽  
pp. 3-14 ◽  
Author(s):  
G. Beaudoin ◽  
J. C. Roddick ◽  
D. F. Sangster

The Ag–Pb–Zn–Au vein and replacement deposits of the Kokanee Range, southeastern British Columbia, are hosted by the Middle Jurassic Nelson batholith and surrounding Cambrian to Triassic metasedimentary rocks in the hanging wall of the transcrustal Slocan Lake Fault, Field relations indicate that mineralization is younger than the Nelson batholith and a Middle Jurassic foliation in the Ainsworth area but coeval or older than Eocene unroofing of the Valhalla metamorphic core complex in the footwall of the Slocan Lake Fault. Lamprophyre and gabbro dykes are broadly coeval with mineralization and have biotite and hornblende K–Ar ages defining a short-lived Middle Eocene alkaline magmatic event between 52 and 40 Ma. An older, Early Cretaceous alkaline magmatic event (141 – 129 Ma) is possible but incompletely documented.K–Ar and step-heating 40Ar/39Ar analyses on hydrothermal vein and alteration muscovite indicate that hydrothermal fluids were precipitating vein and replacement deposits 58–59 Ma ago. Crosscutting relationships with lamprophyre dykes indicate the Kokanee Range hydrothermal system lasted for more than 15 Ma. Eocene crustal extension resulted in a high heat flow and structures which were probably responsible for hydrothermal fluid movement and flow paths.A 100 Ma time interval is documented between batholith emplacement and spatially associated mineralization, ruling out any genetic link between the two. Similar large age differences between granite intrusion and peripheral mineralization have recently been documented for two world-sea le Ag–Pb–Zn vein districts, which suggest that spatial association between granite and Ag–Pb–Zn mineralization is not sufficient to infer a genetic link.


Solid Earth ◽  
2017 ◽  
Vol 8 (5) ◽  
pp. 1025-1045 ◽  
Author(s):  
Andreas K. Kronenberg ◽  
Hasnor F. B. Hasnan ◽  
Caleb W. Holyoke III ◽  
Richard D. Law ◽  
Zhenxian Liu ◽  
...  

Abstract. Previous measurements of water in deformed quartzites using conventional Fourier transform infrared spectroscopy (FTIR) instruments have shown that water contents of larger grains vary from one grain to another. However, the non-equilibrium variations in water content between neighboring grains and within quartz grains cannot be interrogated further without greater measurement resolution, nor can water contents be measured in finely recrystallized grains without including absorption bands due to fluid inclusions, films, and secondary minerals at grain boundaries.Synchrotron infrared (IR) radiation coupled to a FTIR spectrometer has allowed us to distinguish and measure OH bands due to fluid inclusions, hydrogen point defects, and secondary hydrous mineral inclusions through an aperture of 10 µm for specimens > 40 µm thick. Doubly polished infrared (IR) plates can be prepared with thicknesses down to 4–8 µm, but measurement of small OH bands is currently limited by strong interference fringes for samples < 25 µm thick, precluding measurements of water within individual, finely recrystallized grains. By translating specimens under the 10 µm IR beam by steps of 10 to 50 µm, using a software-controlled x − y stage, spectra have been collected over specimen areas of nearly 4.5 mm2. This technique allowed us to separate and quantify broad OH bands due to fluid inclusions in quartz and OH bands due to micas and map their distributions in quartzites from the Moine Thrust (Scotland) and Main Central Thrust (Himalayas).Mylonitic quartzites deformed under greenschist facies conditions in the footwall to the Moine Thrust (MT) exhibit a large and variable 3400 cm−1 OH absorption band due to molecular water, and maps of water content corresponding to fluid inclusions show that inclusion densities correlate with deformation and recrystallization microstructures. Quartz grains of mylonitic orthogneisses and paragneisses deformed under amphibolite conditions in the hanging wall to the Main Central Thrust (MCT) exhibit smaller broad OH bands, and spectra are dominated by sharp bands at 3595 to 3379 cm−1 due to hydrogen point defects that appear to have uniform, equilibrium concentrations in the driest samples. The broad OH band at 3400 cm−1 in these rocks is much less common. The variable water concentrations of MT quartzites and lack of detectable water in highly sheared MCT mylonites challenge our understanding of quartz rheology. However, where water absorption bands can be detected and compared with deformation microstructures, OH concentration maps provide information on the histories of deformation and recovery, evidence for the introduction and loss of fluid inclusions, and water weakening processes.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-21
Author(s):  
Xinglin Chen ◽  
Yongjun Shao ◽  
Chunkit Lai ◽  
Cheng Wang

The Longmendian Ag–Pb–Zn deposit is located in the southern margin of the North China Craton, and the mineralization occurs mainly in quartz veins, altered gneissic wallrocks, and minor fault breccias in the Taihua Group. Based on vein crosscutting relations, mineral assemblages, and paragenesis, the mineralization can be divided into three stages: (1) quartz–pyrite, (2) quartz–polymetallic sulfides, and (3) quartz–carbonate–polymetallic sulfides. Wallrock alteration can be divided into three zones, i.e., chlorite–sericite, quartz–carbonate–sericite, and silicate. Fluid inclusions in all Stage 1 to 3 quartz are dominated by vapor-liquid two-phase aqueous type (W-type). Petrographic and microthermometric analyses of the fluid inclusions indicate that the homogenization temperatures of Stages 1, 2, and 3 are 198–332°C, 132–260°C, and 97–166°C, with salinities of 4.0–13.3, 1.1–13.1, and 1.9–7.6 wt% NaCleqv, respectively. The vapor comprises primarily H2O, with some CO2, H2, CO, N2, and CH4. The liquid phase contains Ca2+, Na+, K+, SO42−, Cl−, and F−. The sulfides have δ34S=–1.42 to +2.35‰ and 208Pb/204Pb=37.771 to 38.795, 207Pb/204Pb=15.388 to 15.686, and 206Pb/204Pb=17.660 to 18.101. The H–C–O–S–Pb isotope compositions indicate that the ore-forming materials may have been derived from the Taihua Group and the granitic magma. The fluid boiling and cooling and mixing with meteoric water may have been critical for the Ag–Pb–Zn ore precipitation. Geological and geochemical characteristics of the Longmendian deposit indicate that the deposit is best classified as medium- to low-temperature intermediate-sulfidation (LS/IS) epithermal-type, related to Cretaceous crustal-extension-related granitic magmatism.


2011 ◽  
Vol 48 (9) ◽  
pp. 1293-1306 ◽  
Author(s):  
Atika Karim ◽  
Georgia Pe-Piper ◽  
David J.W. Piper ◽  
Jacob J. Hanley

Fluid inclusions in diagenetic cements in Upper Jurassic – Lower Cretaceous sandstones offshore Nova Scotia provide constraints on the fluid migration history in gas reservoirs of the Scotian basin. Diagenetic minerals from six wells in the Venture field were analysed by optical petrography, scanning electron microscopy (SEM), and electron microprobe. A total of 122 primary and secondary fluid inclusions were analysed from different cements. Primary aqueous inclusions in quartz overgrowths have homogenization temperatures (Th) of 111.8 ± 7.1 °C (1σ) and in later carbonate cements 126.5 ± 2.1 °C; inclusions in both cements are highly saline (16–26.1 wt.% NaCl equivalent). Secondary aqueous and hydrocarbon-bearing inclusion trails crosscutting silica cement and detrital quartz have Th of 121.6 ± 13.6 °C and low salinities (8.7 ± 6.0 wt.%). Secondary carbonic inclusions have CO2 melting temperatures (–56.6 ± 0.1 °C) and Th (–9.3 ± 0.8 °C) indicating a high-density carbonic phase. Late carbonate cements in the same sandstone units vary in chemical composition in different wells, and connected reservoirs show similar late carbonate assemblages, suggesting that the late carbonate cementation may be partly controlled by the reservoir fill and spill sequence. Silica and late carbonate cementation involved highly saline fluid flow, likely at about ∼135 Ma. Hydrocarbon migration postdated silica cementation and was associated with secondary fracturing, suggesting that it corresponded to the onset of overpressure.


1983 ◽  
Vol 47 (345) ◽  
pp. 473-479 ◽  
Author(s):  
D. K. Hallbauer ◽  
K. von Gehlen

AbstractEvidence obtained from morphological and extensive trace element studies, and from the examination of mineral and fluid inclusions in Witwatersrand pyrites, shows three major types of pyrite: (i) detrital pyrite (rounded pyrite crystals transported into the depositional environment); (ii) synsedimentary pyrite (round and rounded aggregates of fine-grained pyrite formed within the depositional environmen); and (iii) authigenic pyrite (newly crystallized and/or recrystallized pyrite formed after deposition). The detrital grains contain mineral inclusions such as biotite, feldspar, apatite, zircon, sphene, and various ore minerals, and fluid inclusions with daughter minerals. Most of the inclusions are incompatible with an origin by sulphidization. Recrystallized authigenic pyrite occurs in large quantities but only in horizons or localities which have been subjected to higher temperatures during the intrusion or extrusion of younger volcanic rocks. Important additional findings are the often substantial amounts of pyrite and small amounts of particles of gold found in Archaean granites (Hallbauer, 1982) as possible source rocks for the Witwatersrand detritus. Large differences in Ag and Hg content between homogeneous single gold grains within a hand specimen indicate a lack of metamorphic homogenization. The influence of metamorphism on the Witwatersrand pyrites can therefore be described as only slight and generally negligible.


Sign in / Sign up

Export Citation Format

Share Document