Geological and geophysical characteristics of the Tuzo Wilson Seamounts: implications for plate geometry in the vicinity of the Pacific – North America – Explorer triple junction

1989 ◽  
Vol 26 (11) ◽  
pp. 2365-2384 ◽  
Author(s):  
S. M. Carbotte ◽  
J. M. Dixon ◽  
E. Farrar ◽  
E. E. Davis ◽  
R. P. Riddihough

SeaMARC II imagery, SEABEAM bathymetry, seismic reflection profiles, and gravity and magnetic data are used to establish the tectonic significance of the Tuzo Wilson Seamounts, two submarine volcanic edifices located southwest of the southern end of the Queen Charlotte transform fault. SeaMARC II imagery reveals a parallel transform fault, an extension of the Revere–Dellwood Fault, bordering the southwest end of the Dell wood Knolls and terminating at the southwest end of the Tuzo Wilson Seamounts. This transform-fault system links spreading at the north end of Explorer Ridge to extension at the Tuzo Wilson Seamounts. An inactive continuation of this transform 50 km to the northwest of Tuzo Wilson Seamounts is inferred from seismic profiles. Between Dellwood Knolls and Tuzo Wilson Seamounts, this transform fault has offset Pleistocene (ca. 10 000 a) sea-bed features in a right-lateral sense by 250 m and has offset part of the Dellwood Knolls volcanic edifice by 6–8 km. Numerous normal faults at the Tuzo Wilson Seamounts and Dellwood Knolls are roughly orthogonal to the Queen Charlotte and Revere–Dellwood transforms and indicate rifting in an extensional jog between the transforms. Seismic profiles reveal sediments and basement back-tilted northwest and southeast away from the Tuzo Wilson Seamounts, also consistent with extension. Acoustic imagery indicates that the Tuzo Wilson Seamounts are surrounded by basalt flows that are largely free of sediment cover and thus postdate recent rapid sedimentation (< 10 000 a). In contrast, few of the flows around Dellwood Knolls are free of sediment. Basalts from the Tuzo Wilson Seamounts have high magnetizations (average 35 A/m) and are free of manganese encrustation. Tuzo Wilson Seamounts have a + 1000 nT magnetic anomaly, which can be modelled with normal, high-intensity (up to 40 A/m) magnetization and with geometry and depth matching the topography of the seamounts and surficial basalt flows. Their small, positive free-air gravity is largely accounted for by their topography; no appreciable local density contrast exists below the surrounding sea floor.The Tuzo Wilson Seamounts and Dellwood Knolls are separate sites of sea-floor spreading, although the partition of spreading between them is indeterminate. The 50 km inactive continuation of the Revere–Dellwood transform requires that a total of at least 100 km of sea floor has been created at the Tuzo Wilson and Dellwood spreading centres, probably within the last 2.5 Ma. The sea floor between the Tuzo Wilson Seamounts and Dellwood Knolls either is a separate microplate or is under going distributed strain. The triple junction of the Pacific, North America, and Explorer plates is not a discrete point; rather it occupies the strained and seismically active region between the northern Explorer Ridge and the Tuzo Wilson Seamounts.

2016 ◽  
Author(s):  
Godfred Osukuku ◽  
Abiud Masinde ◽  
Bernard Adero ◽  
Edmond Wanjala ◽  
John Ego

Abstract This research work attempts to map out the stratigraphic sequence of the Kerio Valley Basin using magnetic, gravity and seismic data sets. Regional gravity data consisting of isotactic, free-air and Bouguer anomaly grids were obtained from the International Gravity Bureau (BGI). Magnetic data sets were sourced from the Earth Magnetic Anomaly grid (EMAG2). The seismic reflection data was acquired in 1989 using a vibrating source shot into inline geophones. Gravity Isostacy data shows low gravity anomalies that depict a deeper basement. Magnetic tilt and seismic profiles show sediment thickness of 2.5-3.5 Km above the basement. The Kerio Valley Basin towards the western side is underlain by a deeper basement which are overlain by succession of sandstones/shales and volcanoes. At the very top are the mid Miocene phonolites (Uasin Gishu) underlain by mid Miocene sandstones/shales (Tambach Formation). There are high gravity anomalies in the western and southern parts of the basin with the sedimentation being constrained by two normal faults. The Kerio Valley Basin is bounded to the west by the North-South easterly dipping fault system. Gravity data was significantly of help in delineating the basement, scanning the lithosphere and the upper mantle according to the relative densities. The basement rocks as well as the upper cover of volcanoes have distinctively higher densities than the infilled sedimentary sections within the basin. From the seismic profiles, the frequency of the shaley rocks and compact sandstones increases with depths. The western side of the basin is characterized by the absence of reflections and relatively higher frequency content. The termination of reflectors and the westward dip of reflectors represent a fault (Elgeyo fault). The reflectors dip towards the west, marking the basin as an asymmetrical syncline, indicating that the extension was towards the east. The basin floor is characterized by a nearly vertical fault which runs parallel to the Elgeyo fault. The seismic reflectors show marked discontinuities which may be due to lava flows. The deepest reflector shows deep sedimentation in the basin and is in reasonable agreement with basement depths delineated from potential methods (gravity and magnetic). Basement rocks are deeper at the top of the uplift footwall of the Elgeyo Escarpment. The sediments are likely of a thickness of about 800 M which is an interbed of sandstones and shales above the basement.


Author(s):  
Roy Livermore

The magnetic bar-code on the ocean floor provides convincing evidence of moving continents, yet, as with the discovery of the structure of DNA, few are convinced—at first. Drilling in the deep oceans and geochemical work at mid-ocean ridges provides further evidence in support of the Vine–Matthews Hypothesis. Application of the hypothesis to data collected in the Pacific and Atlantic Oceans establishes sea-floor spreading as the process that creates new oceans and, in conjunction with reversals of the geomagnetic field, stamps the bar-code into the rocks beneath the sea bed.


2006 ◽  
Author(s):  
J.K. Madsen ◽  
D.J. Thorkelson ◽  
R.M. Friedman ◽  
D.D. Marshall

Geosphere, February 2006, v. 2, p. 11-34, doi: 10.1130/GES00020.1. Movie 1 - Tectonic model for the Pacific Basin and northwestern North America from 53 Ma to 39 Ma. The file size is 1.3 MB.


Author(s):  
EDWARD D. GOLDBERG ◽  
ROBERT H. PARKER
Keyword(s):  

2004 ◽  
Vol 5 (1) ◽  
pp. 16
Author(s):  
Dean A. Glawe

Chinese matrimony-vine (Lycium chinense Mill.) is a traditional medicinal plant grown in China and used as a perennial landscape plant in North America. This report documents the presence of powdery mildew on L. chinense in the Pacific Northwest and describes and illustrates morphological features of the causal agent. It appears to be the first report of a powdery mildew caused by Arthrocladiella in the Pacific Northwest. Accepted for publication 10 November 2004. Published 8 December 2004.


2009 ◽  
Vol 24 (6) ◽  
pp. 1732-1747 ◽  
Author(s):  
Alain Roberge ◽  
John R. Gyakum ◽  
Eyad H. Atallah

Abstract Significant cool season precipitation along the western coast of North America is often associated with intense water vapor transport (IWVT) from the Pacific Ocean during favorable synoptic-scale flow regimes. These relatively narrow and intense regions of water vapor transport can originate in either the tropical or subtropical oceans, and sometimes have been referred to as Pineapple Express events in previous literature when originating near Hawaii. However, the focus of this paper will be on diagnosing the synoptic-scale signatures of all significant water vapor transport events associated with poleward moisture transport impacting the western coast of Canada, regardless of the exact points of origin of the associated atmospheric river. A trajectory analysis is used to partition the events as a means of creating coherent and meaningful synoptic-scale composites. The results indicate that these IWVT events can be clustered by the general area of origin of the majority of the saturated parcels impacting British Columbia and the Yukon Territories. IWVT events associated with more zonal trajectories are characterized by a strong and mature Aleutian low, whereas IWVT events associated with more meridional trajectories are often characterized by an anticyclone situated along the California or Oregon coastline, and a relatively mature poleward-traveling cyclone, commonly originating in the central North Pacific.


Sign in / Sign up

Export Citation Format

Share Document