U–Pb geochronology of Late Proterozoic rocks of the eastern Cobequid Highlands, Avalon Composite Terrane, Nova Scotia

1991 ◽  
Vol 28 (4) ◽  
pp. 504-511 ◽  
Author(s):  
Ronald Doig ◽  
J. Brendan Murphy ◽  
R. Damian Nance

In the Cobequid Highlands of Nova Scotia, low-grade late Precambrian arc-related volcano-sedimentry rocks typical of the Avalon Composite Terrane overlie platformal metasedimentry rocks and are spatially associated with gneisses previously considered to be basement to both these units. U–Pb zircon dates of 580–587 Ma from an orthogneiss and an amphibolite are similar to the U–Pb zircon dates of 580–610 Ma from both syntectonic granites in ductile shear zones and high-level posttectonic plutons that intruded the Avalonian successions. Hence, the gneisses do not represent basement but are an integral part of the Avalonian orogenic cycle. The geochronological data indicate that penetrative fabrics in the gneisses, syntectonic granites, and volcano-sedimentary successions are penecontemporaneous (ca. 580–620 Ma) and not sequential, as previously interpreted. The gneisses have a metamorphic fabric (S1a), crystallized under amphibolite-facies conditions, and may represent the deeper roots of a late Precambrian magmatic arc. Fabrics within the deformed granite gneisses (S1b) are interpreted as reflecting crystallization within active ductile shear zones associated with intra-arc transtension and basin development. Fabrics in the volcano-sedimentary successions (S1c) are associated with deformation of the basin.

2017 ◽  
Vol 47 (3) ◽  
pp. 427-440
Author(s):  
Edimar Perico ◽  
Carlos Eduardo de Mesquita Barros ◽  
Fernando Mancini ◽  
Sidnei Pires Rostirolla

ABSTRACT: In the Paleoproterozoic Transamazonas Province, synkinematic granitogenesis has taken place synchronously with compressive tectonic stress. The synkinematic character of the granites is marked by their WNW elongate shape, and by the presence of pervasive and concordant synmagmatic foliation. Ductile shear zones are concordant to the previous regional WNW structures, and tend to be accommodated along contacts between Rhyacian synkinematic granitoids and both Archean orthogneisses and Siderian metabasites. Locally phyllonitic shear zones and brittle-ductile shear zones with cataclasites are oriented subparallel to the preexisting ductile foliation. Late orogenic brittle faults N30E-trending strike-slip faults are either sinistral or destral. 40Ar/39Ar dating of muscovite developed on fault planes gave ages of 1977 ± 8 Ma and 1968 ± 11 Ma. Structural and geochronological data from rocks of the Transamazonas Province permit to conclude that most mylonites and brittle structures were controlled by preexisting structures such as geological contacts and petrographic facies boundaries. Compressive tectonic stress would have initiated at ca. 2100 Ma, since the former magmatic arc (Bacajaí complex), still present at 2070 Ma when syntectonic granites were emplaced and remained until 1975 Ma after granite plutonism and regional cooling.


2013 ◽  
Vol 64 (5) ◽  
pp. 375-382 ◽  
Author(s):  
Franz Neubauer ◽  
Ana-Voica Bojar

Abstract Single grains of detrital white mica from the lowermost Upper Cretaceous Sinaia Flysch have been dated using the 40Ar/39Ar technique. The Sinaia Flysch was deposited in a trench between the Danubian and Getic microcontinental pieces after the closure of the Severin oceanic tract. The Danubian basement is largely composed of a Panafrican/Cadomian basement in contrast to the Getic/Supragetic units with a Variscan-aged basement, allowing the distinction between these two blocks. Dating of detrital mica from the Sinaia Flysch resulted in predominantly Variscan ages (329 ± 3 and 288 ± 4 Ma), which prove the Getic/Supragetic source of the infill of the Sinaia Trench. Subordinate Late Permian (263 ± 8 and 255 ±10 Ma), Early Jurassic (185 ± 4 and 183 ± 3 Ma) and Late Jurassic/Early Cretaceous (149 ± 3 and 140 ± 3 Ma) ages as well as a single Cretaceous age (98 ± 4 Ma) are interpreted as representing the exposure of likely retrogressive low-grade metamorphic ductile shear zones of various ages. Ductile shear zones with similar 40Ar/39Ar white mica ages are known in the Getic/Supragetic units. The Cretaceous ages also show that Cretaceous metamorphic units were already subject to erosion during the deposition of the Sinaia Flysch.


1994 ◽  
Vol 31 (7) ◽  
pp. 1081-1095 ◽  
Author(s):  
J. T. Bursnall ◽  
A. D. Leclair ◽  
D. E. Moser ◽  
J. A. Percival

Comparison of progressive deformation and metamorphic history within and between the tectonic domains of the Kapuskasing uplift indicates significant variation in age and style of deformation across this large segment of the central Superior Province; multiple stages of tonalite and granitoid intrusion, melt generation, polyphase diachronous deformation, and likely rapid deep burial of supracrustal rocks collectively produced the complex character of this example of Archean mid to deep crust. At least four Archean deformation phases are recognized, although not all are of regional extent. Dated structural chronology suggests that the locus of the earliest recorded deformations migrated to deeper crustal levels with time. Pre-2680 Ma deformation (local D1–D2) within high-level tonalites is correlated with deformation in the Michipicoten supracrustal belt. The apparent earliest deformational fabrics at deeper crustal levels in the granulite terrane of the Kapuskasing structural zone occurred between 2660 and 2640 Ma. Archean third and fourth phase deformation phases (~ 2667 to ~ 2629 Ma) are present at mid-crustal and deeper levels and deform post-2667 Ma metaconglomerate; these resulted in large-scale folding and subhorizontal ductile shear zones, which seem to represent an important transitional zone that separated a passive upper crust from continued ductile strain at deeper levels.Subsequent uplift of the high-grade rocks was accomplished in multiple stages, initiated prior to 2.45 Ga and likely culminated around 1.9 Ga, although continued movement occurred as late as 1.14 Ga. The Ivanhoe Lake fault zone, along which much of the uplift must have occurred, exhibits some evidence of ductile deep-thrust-related fabrics, but most of the observed structures are brittle to brittle–ductile and steeply inclined. A broad zone of pervasive cataclasis and brittle–ductile shear zones is a characteristic feature of the fault zone throughout its length, and both dextral and sinistral offset are locally present. Clear ground evidence for major transcurrent or thrust displacements, however, has not been recognized.


2019 ◽  
Author(s):  
William O. Nachlas ◽  
◽  
Christian Teyssier ◽  
Donna L. Whitney ◽  
Greg Hirth

Sign in / Sign up

Export Citation Format

Share Document