A seismic-based cross-section of the Grenville Orogen in southern Ontario and western Quebec

2000 ◽  
Vol 37 (2-3) ◽  
pp. 183-192 ◽  
Author(s):  
D J White ◽  
D A Forsyth ◽  
I Asudeh ◽  
S D Carr ◽  
H Wu ◽  
...  

A schematic crustal cross-section is presented for the southwestern Grenville Province based on reprocessed Lithoprobe near-vertical incidence seismic reflection data and compiled seismic refraction - wide-angle velocity models interpreted with geological constraints. The schematic crustal architecture of the southwest Grenville Province from southeast to northwest comprises allochthonous crustal elements (Frontenac-Adirondack Belt and Composite Arc Belt) that were assembled prior to ca. 1160 Ma, and then deformed and transported northwest over reworked rocks of pre-Grenvillian Laurentia and the Laurentian margin primarily between 1120 and 980 Ma. Reworked pre-Grenvillian Laurentia and Laurentian margin rocks are interpreted to extend at least 350 km southeast of the Grenville Front beneath all of the Composite Arc Belt. Three major structural boundary zones (the Grenville Front and adjacent Grenville Front Tectonic Zone, the Central Metasedimentary Belt boundary thrust zone, and the Elzevir-Frontenac boundary zone) have been identified across the region of the cross-section based on their prominent geophysical signatures comprising broad zones of southeast-dipping reflections and shallowing of mid-crustal velocity contours by 12-15 km. The structural boundary zones accommodated southeast over northwest crustal stacking at successively earlier times during orogeny (ca. 1010-980 Ma, 1080-1060 Ma, and 1170-1160 Ma, respectively). These shear zones root within an interpreted gently southeast-dipping regional décollement at a depth of 25-30 km corresponding to the top of a high-velocity lower crustal layer.

2000 ◽  
Vol 37 (2-3) ◽  
pp. 193-216 ◽  
Author(s):  
S D Carr ◽  
R M Easton ◽  
R A Jamieson ◽  
N G Culshaw

Revised cross sections of the western Grenville Province incorporate new geologic results and reprocessed seismic reflection data. The geology is presented in terms of three tectonic elements: (1) "pre-Grenvillian Laurentia and its margin" with ca. 1740 and 1450 Ma continental arc plutons and associated supracrustal rocks; (2) "Composite Arc Belt" of allochthonous ~1300-1250 Ma volcanic arcs and sedimentary rocks; and (3) "Frontenac-Adirondack Belt" characterized by supracrustal and granitoid rocks, and anorthosites, of uncertain affinity, that may represent a distinctive part of the Composite Arc Belt or an offshore (micro)continent. Rocks of the Composite Arc and Frontenac-Adirondack belts were amalgamated with each other by ca. 1160 Ma, were then thrust over Laurentia during ca. 1080-1035 Ma and ca. 1010-980 Ma phases of convergence, and were dissected and exhumed by <1040 Ma normal faults. Penetrative deformation was restricted to that part of the pre-Grenvillian Laurentian margin that lies to the southeast of the Grenville front and parts of the accreted Composite Arc and Frontenac-Adirondack belts. The Laurentian rocks in the Grenville Province are bounded to the northwest and southeast by southeast-dipping ductile thrust and (or) normal shear zones. The Composite Arc and Frontenac-Adirondack belts to the southeast are bounded by ductile and brittle-ductile thrust and (or) normal faults that separate domains with contrasting cooling histories. Despite a long pre-Grenvillian tectonic and plutonic history, the present crustal architecture and much of the seismic reflectivity were acquired during 1080-980 Ma phases of compression and extension.


1995 ◽  
Vol 32 (2) ◽  
pp. 149-166 ◽  
Author(s):  
Gilles Grandjean ◽  
Hua Wu ◽  
Donald White ◽  
Marianne Mareschal ◽  
Claude Hubert

We present velocity models for two seismic wide–angle-refraction profiles across the Archean Abitibi greenstone belt and the Pontiac Subprovince. The seismic profiles are 210 and 220 km long. Traveltime inversion and amplitude forward modelling were used to obtain two-dimensional velocity structure and interface geometry. The main features of the velocity models include (1) three crustal layers; (2) variable velocities (5.6–6.4 km/s) in the upper crust (~0–12 km), with the higher velocities generally associated with mafic metavolcanics and the lower velocities with metasediments and granitic plutons; (3) a relatively uniform middle crust (~12–30 km) with velocities ranging from 6.4 to 6.6 km/s; (4) a velocity increase of 0.3 km/s across the middle crust–lower crust boundary; (5) a lower crust (~30–40 km) with velocities increasing from 6.9 km/s at the top to 7.3 km/s at the base; (6) an average upper mantle velocity of 8.15 km/s; (7) depth to Moho of about 40 km in the north-central Abitibi belt, decreasing southward to 37 km beneath the Pontiac Subprovince; and (8) observed attenuation of seismic energy propagating through the Casa–Berardi deformation zone, suggesting a complex structure in this fault zone. The velocity model is generally consistent with seismic reflection interpretations that suggest that the shallow supracrustal assemblages form an allochthonous veneer, overlying a mid-crustal imbricate sequence of metaplutonic and metasedimentary rocks. The uniform-velocity structure below 12 km depth indicates that the tectonic zones juxtaposing disparate crustal blocks may have limited depth extent. The 40 km thick crust and 10 km thick high-velocity lower crustal layer exceed the thicknesses observed in other studies of Archean crust.


1998 ◽  
Vol 35 (5) ◽  
pp. 583-601 ◽  
Author(s):  
Keith E Louden ◽  
Jianming Fan

Crustal structures of the eastern Grenville, Makkovik, and southern Nain provinces are determined using seismic reflection-refraction and gravity data along the Lithoprobe Eastern Canadian Shield Onshore-Offshore Transect (ECSOOT). Within the Grenville Province, the velocity model contains a 5 km thick upper crust and a variable-thickness middle to lower crust. The total crustal thickness varies from 25 to 43 km, with the thickest crust in the south and thinnest crust in the north. A high-velocity, lower crustal wedge is coincident with a strong band of northward-dipping reflectors. The two-dimensional velocity structure is compatible with modelling of a 60 mGal gravity high over the Hawke River terrane. In the Makkovik Province, the thickness of upper crustal velocities increases to 17 km. The velocity decrease in the upper to middle crust from the Grenville Province to the Makkovik Province is similar to that of refraction models across the Grenville Front in Ontario and Quebec. It is possibly related to a decrease in metamorphic grade from south to north and (or) a larger volume of unmetamorphosed plutons in the Makkovik Province. A lower crustal layer is coincident with a region of increased reflectivity in the lower crust. There are no major crustal discontinuities associated with terrane boundaries within the Makkovik Province. The base of the crust is consistent with a change from north- to south-dipping reflectors beneath the Cape Harrison domain. Alternatively, it may consist of a thick zone of complex velocity variations, consistent with a zone of diffusive reflectivity observed to the north of the Allik domain.


2000 ◽  
Vol 37 (2-3) ◽  
pp. 439-458 ◽  
Author(s):  
R F Mereu

The major features of the individual velocity models, Poisson's ratio values, and crustal complexity derived from the interpretation of seismic data sets from four long-range seismic refraction - wide-angle reflection experiments are summarized. The experiments were conducted from 1982-92 in the southeastern portion of the Canadian Shield. In the conventional analysis of seismic refraction - wide-angle reflection data, only the onset times and amplitudes of the major arrival phases are used to derive seismic velocity models of the region under study. These models are over smoothed, have a number of intermediate discontinuities, are unable to explain the Pg coda, and bear very little resemblance to the models derived from the analysis of near-vertical seismic reflection data. In this paper some of the differences between seismic models derived from near-vertical reflection analysis and those from refraction analysis are reconciled from an analysis of the wide-angle reflection fields of the crustal coda waves that follow the first arrivals. This was done using a migration technique that to a first approximation maps the amplitudes of the record sections into a two-dimensional (2-D) complexity section. These new sections show significant lateral variations in crustal and Moho reflectivity and may be used to complement the 2-D velocity anomaly sections and near-vertical reflection sections. The method was based on a numerical study that showed that the coda can be explained with a class of complex heterogeneous models in which sets of small-scale, high-contrast sloping seismic reflectors are "embedded" in a uniform seismic velocity gradient field.


Geophysics ◽  
2002 ◽  
Vol 67 (4) ◽  
pp. 1202-1212 ◽  
Author(s):  
Hervé Chauris ◽  
Mark S. Noble ◽  
Gilles Lambaré ◽  
Pascal Podvin

We present a new method based on migration velocity analysis (MVA) to estimate 2‐D velocity models from seismic reflection data with no assumption on reflector geometry or the background velocity field. Classical approaches using picking on common image gathers (CIGs) must consider continuous events over the whole panel. This interpretive step may be difficult—particularly for applications on real data sets. We propose to overcome the limiting factor by considering locally coherent events. A locally coherent event can be defined whenever the imaged reflectivity locally shows lateral coherency at some location in the image cube. In the prestack depth‐migrated volume obtained for an a priori velocity model, locally coherent events are picked automatically, without interpretation, and are characterized by their positions and slopes (tangent to the event). Even a single locally coherent event has information on the unknown velocity model, carried by the value of the slope measured in the CIG. The velocity is estimated by minimizing these slopes. We first introduce the cost function and explain its physical meaning. The theoretical developments lead to two equivalent expressions of the cost function: one formulated in the depth‐migrated domain on locally coherent events in CIGs and the other in the time domain. We thus establish direct links between different methods devoted to velocity estimation: migration velocity analysis using locally coherent events and slope tomography. We finally explain how to compute the gradient of the cost function using paraxial ray tracing to update the velocity model. Our method provides smooth, inverted velocity models consistent with Kirchhoff‐type migration schemes and requires neither the introduction of interfaces nor the interpretation of continuous events. As for most automatic velocity analysis methods, careful preprocessing must be applied to remove coherent noise such as multiples.


Solid Earth ◽  
2013 ◽  
Vol 4 (2) ◽  
pp. 543-554 ◽  
Author(s):  
I. Flecha ◽  
R. Carbonell ◽  
R. W. Hobbs

Abstract. The difficulties of seismic imaging beneath high velocity structures are widely recognised. In this setting, theoretical analysis of synthetic wide-angle seismic reflection data indicates that velocity models are not well constrained. A two-dimensional velocity model was built to simulate a simplified structural geometry given by a basaltic wedge placed within a sedimentary sequence. This model reproduces the geological setting in areas of special interest for the oil industry as the Faroe-Shetland Basin. A wide-angle synthetic dataset was calculated on this model using an elastic finite difference scheme. This dataset provided travel times for tomographic inversions. Results show that the original model can not be completely resolved without considering additional information. The resolution of nonlinear inversions lacks a functional mathematical relationship, therefore, statistical approaches are required. Stochastic tests based on Metropolis techniques support the need of additional information to properly resolve sub-basalt structures.


Author(s):  
GN Egwuonwu ◽  
EI Okoyeh ◽  
DC Agarana ◽  
EG Nwaka ◽  
OB Nwosu ◽  
...  

Two-dimensional Electrical Resistivity Tomography (2DERT) and Seismic Refraction Tomography (2DSRT) were concurrently applied in assessment of a gully site with the view of assessing its stability and risk level. Eight profile lines oriented parallel and perpendicular to the boundary of the gully were surveyed. As a result, apparent resistivity model tomograms in the range of 1-9,000 and p-wave velocity models in the range of 300-700 were obtained from the two techniques respectively. Interpretation of the models obtained show predominance of unconsolidated clay, shale intercalates, clayey sand, sandy clay and weathered lateritic soil at shallow depths. Low amplitude undulating refracting layers, landslide slip subsurface and lose horizons were also delineated at shallow depths. The predominance of weak, clayey and unconsolidated lithology at the gully site suggests evidence of unstable gravitational equilibrium which imply environmental hazard. The plausible deductions made from the two


2002 ◽  
Vol 39 (3) ◽  
pp. 351-373 ◽  
Author(s):  
Ron M Clowes ◽  
Michael JA Burianyk ◽  
Andrew R Gorman ◽  
Ernest R Kanasewich

Lithoprobe's Southern Alberta Refraction Experiment, SAREX, extends 800 km from east-central Alberta to central Montana. It was designed to investigate crustal velocity structure of the Archean domains underlying the Western Canada Sedimentary Basin. From north to south, SAREX crosses the Loverna domain of the Hearne Province, the Vulcan structure, the Medicine Hat block (previously considered part of the Hearne Province), the Great Falls tectonic zone, and the northern Wyoming Province. Ten shot points along the profile in Canada were recorded on 521 seismographs deployed at 1 km intervals. To extend the line, an additional 140 seismographs were deployed at intervals of 1.25–2.50 km in Montana. Data interpretation used an iterative application of damped least-squares inversion of traveltime picks and forward modeling. Results show different velocity structures for the major blocks (Loverna, Medicine Hat, and Wyoming), indicating that each is distinct. Wavy undulations in the velocity structure of the Loverna block may be associated with internal crustal deformation. The most prominent feature of the model is a thick (10–25 km) lower crustal layer with high velocities (7.5–7.9 km/s) underlying the Medicine Hat and Wyoming blocks. Based on data from lower crustal xenoliths in the region, this layer is interpreted to be the result of Paleoproterozoic magmatic underplating. Crustal thickness varies from 40 km in the north to almost 60 km in the south, where the high-velocity layer is thickest. Uppermost mantle velocities range from 8.05 to 8.2 km/s, with the higher values below the thicker crust. Results from SAREX and other recent studies are synthesized to develop a schematic representation of Archean to Paleoproterozoic tectonic development for the region encompassing the profile. Tectonic processes associated with this development include collisions of continental blocks, subduction, crustal thickening, and magmatic underplating.


Geophysics ◽  
1994 ◽  
Vol 59 (4) ◽  
pp. 577-590 ◽  
Author(s):  
Side Jin ◽  
Raul Madariaga

Seismic reflection data contain information on small‐scale impedance variations and a smooth reference velocity model. Given a reference velocity model, the reflectors can be obtained by linearized migration‐inversion. If the reference velocity is incorrect, the reflectors obtained by inverting different subsets of the data will be incoherent. We propose to use the coherency of these images to invert for the background velocity distribution. We have developed a two‐step iterative inversion method in which we separate the retrieval of small‐scale variations of the seismic velocity from the longer‐period reference velocity model. Given an initial background velocity model, we use a waveform misfit‐functional for the inversion of small‐scale velocity variations. For this linear step we use the linearized migration‐inversion method based on ray theory that we have recently developed with Lambaré and Virieux. The reference velocity model is then updated by a Monte Carlo inversion method. For the nonlinear inversion of the velocity background, we introduce an objective functional that measures the coherency of the short wavelength components obtained by inverting different common shot gathers at the same locations. The nonlinear functional is calculated directly in migrated data space to avoid expensive numerical forward modeling by finite differences or ray theory. Our method is somewhat similar to an iterative migration velocity analysis, but we do an automatic search for relatively large‐scale 1-D reference velocity models. We apply the nonlinear inversion method to a marine data set from the North Sea and also show that nonlinear inversion can be applied to realistic scale data sets to obtain a laterally heterogeneous velocity model with a reasonable amount of computer time.


Geosphere ◽  
2020 ◽  
Vol 16 (3) ◽  
pp. 844-874
Author(s):  
Graham B. Baird

Abstract Crustal-scale shear zones can be highly important but complicated orogenic structures, therefore they must be studied in detail along their entire length. The Carthage-Colton mylonite zone (CCMZ) is one such shear zone in the northwestern Adirondacks of northern New York State (USA), part of the Mesoproterozoic Grenville province. The southern CCMZ is contained within the Diana Complex, and geochemistry and U-Pb zircon geochronology demonstrate that the Diana Complex is expansive and collectively crystallized at 1164.3 ± 6.2 Ma. Major ductile structures within the CCMZ and Diana Complex include a northwest-dipping penetrative regional mylonitic foliation with north-trending lineation that bisects a conjugate set of mesoscale ductile shear zones. These ductile structures formed from the same 1060–1050 Ma pure shear transitioning to a top-to-the-SSE shearing event at ∼700 °C. Other important structures include a ductile fault and breccia zones. The ductile fault formed immediately following the major ductile structures, while the breccia zones may have formed at ca. 945 Ma in greenschist facies conditions. Two models can explain the studied structures and other regional observations. Model 1 postulates that the CCMZ is an Ottawan orogeny (1090–1035 Ma) thrust, which was later reactivated locally as a tectonic collapse structure. Model 2, the preferred model, postulates that the CCMZ initially formed as a subhorizontal mid-crustal mylonite zone during collapse of the Ottawan orogen. With continued collapse, a metamorphic core complex formed and the CCMZ was rotated into is current orientation and overprinted with other structures.


Sign in / Sign up

Export Citation Format

Share Document